Journal of Statistical Physics

, Volume 11, Issue 5, pp 421–431 | Cite as

Some evidence for the validity of the noise-temperature inequalityθ ≥T in the relaxation approximation of the one-dimensional electron transport problem in high electric fields

  • W. A. Schlup


The conjecture that “noise” is always smallest in an equilibrium system is made quantitative for a transport problem by identifying “noise” with the noise temperatureθ. In equilibrium the external fieldF=0, and the fluctuation-dissipation theorem gives θ= T, the temperature. In a strong fieldF the Boltzmann equation in the constant relaxation approximation is used to calculate the driftu(F, T) the diffusion constantD(F, T), and the noise temperatureθ(F, T) for piecewise linear one-dimensional band structuresE(k). The validity of the noise inequalityθ ≥T has been shown for a large variety of band parameters and for all fields and temperatures.

Key words

Transport problem stationary nonequilibrium state nonlinear fluctuation phenomena noise temperature diffusion temperature fluctuation-dissipation theorem hot electron system Brownian motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Price,Fluctuation Phenomena in Solids, R. E. Burgess (ed.), Academic Press, New York and London (1965), Chapter 8, p. 355.Google Scholar
  2. 2.
    E. M. Conwell,High Field Transport in Semiconductors, Academic Press, New York and London (1967).Google Scholar
  3. 3.
    W. Fawcett, A. D. Boardman, and S. Swain,J. Phys. Chem. Solids 31:1963 (1970).Google Scholar
  4. 4.
    W. A. Schlup,Phys. Kondens. Materie 8:167 (1968).Google Scholar
  5. 5.
    W. A. Schlup,Phys. Kondens. Materie 10:116 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • W. A. Schlup
    • 1
  1. 1.IBM Zurich Research LaboratoryRüschlikonSwitzerland

Personalised recommendations