Meteorology and Atmospheric Physics

, Volume 66, Issue 3–4, pp 197–214 | Cite as

Performance of two cumulus convection parameterizations for two heavy precipitation events in the Western Mediterranean

  • R. Romero
  • C. Ramis
  • S. Alonso


A set of mesoscale numerical simulations using the Emanuel and Kain-Fritsch deep convection schemes has been performed in order to determine the sensitivity of the forecast-especially, the rainfall-to the scheme used. The study is carried out for two cases of heavy precipitation in the coastal zone of the Western Mediterranean, where the topographic forcing is of primary influence. The first one, characterized by an almost stationary synoptic situation, is dominated by warm, moist advection at low levels; the second one, of frontal type, presents a much stronger dynamic forcing at upper levels. Although the comparison attempt is conditioned by the limited number of considered cases, the numerical results provide at least some preliminary conclusions. The inclusion of a convective scheme improves the forecast precipitation, through two actions: directly, producing more realistic rainfall patterns in areas of convection; indirectly, avoiding excessive precipitation in areas with orographic or dynamical upward forcing by drying and stabilizing the atmosphere upstream. In particular, the Kain-Fritsch scheme seems to be more sensitive to the orographic forcing, in agreement with observations.


Convection Advection Heavy Precipitation Deep Convection Convection Parameterization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, A., Schubert, W. H. 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I.J. Atmos. Sci.,31, 674–701.Google Scholar
  2. Benjamin, S. G., Carlson, T. N., 1985: Some effects of surface heating and topography on the regional severe storm environment. Part I: Three-dimensional simulations.Mon. Wea. Rev.,114, 307–329.Google Scholar
  3. Berry, E. X., Reinhardt, R. L., 1973: Modeling of condensation and collection within clouds. D. R. I. Phys. Sci. Pub. No. 16. University of Nevada.Google Scholar
  4. Bhumralkar, C. M., 1975: Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model.J. Appl. Meteor.,14, 1246–1258.Google Scholar
  5. Blackadar, A. K., 1976:Modeling the nocturnal boundary layer. Proceedings of the Third Symposium on Atmospheric turbulence, Diffusion and Air Quality, American Meteorological Society, Boston, 46–49.Google Scholar
  6. Bougeault, P., Lacarrère, P., 1989: Parameterization of orographic induced turbulence in a mesobeta scale model.Mon. Wea. Rev.,117, 1872–1890.Google Scholar
  7. Buzzi, A., Tartaglione, N., 1996: Some aspects of the Piedmont flood: Frontal splitting and role of humid processes.MAP Newsletter,5, 38–39.Google Scholar
  8. Davies, H. C., 1976: A lateral boundary formulation for multilevel prediction models.Quart. J. Roy. Meteor. Soc.,102, 405–418.Google Scholar
  9. Doswell, C. A. III, Ramis, C., Romero, R., Alonso, S., 1998: A diagnostic study of three heavy precipitation episodes in the western Mediterranean region.Wea. Forecastings,13, 102–124.Google Scholar
  10. Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models.J. Atmos. Sci.,48, 2313–2335.Google Scholar
  11. Fernández, C., Gaertner, M. A., Gallardo, C., Castro, M. 1995: Simulation of a long-lived meso-β scale convective system over the mediterranean coast of Spain. Part I. Numerical predictability.Meteorol. Atmos. Phys.,56, 157–179.Google Scholar
  12. Font, I., 1983:Climatología de España y Portugal. Instituto Nacional de Meteorología, Apartado 285, 28071, Madrid, 296 pp.Google Scholar
  13. Frank, W. M., 1983: The cumulus parameterization problem. Mon. Wea., Rev.,111, 1859–1871.Google Scholar
  14. Fritsch, J. M., Chappell, C. F., Hoxit, L. R., 1976: The use of large scale budgets for convective parameterization.Mon. Wea., Rev.,104, 1408–1418.Google Scholar
  15. Fritsch, J. M., Chappell, C. F., 1980: Numerical prediction of convectively driven mesoscale pressure systems Part I. Convective parameterization.J. Atmos. Sci.,37, 1722–1733.Google Scholar
  16. Georgelin, M., Richard, E., Petitdidier, M., Druilhet, A., 1994: Impact of subgrid-scale orography parameterization on the simulation of orographic flows.Mon. Wea. Rev.,122, 1509–1522.Google Scholar
  17. Kain, J. S., Fritsch, J. M., 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization.J. Atmos. Sci.,47, 2784–2802.Google Scholar
  18. Kreitzberg, C. W., Perkey, D. J., 1976: Release of potential instability. Part I: A sequential plume model within a hydrostatic primitive equation model.J. Atmos. Sci.,33, 456–475.Google Scholar
  19. Lionetti, M., 1996: The Italian floods of 4–6 November 1994.Weather,51, 18–27.Google Scholar
  20. Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere.Bound. Layer Meteor. 17, 187–202.Google Scholar
  21. Maddox, R., 1980: Mesoscale convective complexes.Bull. Amer. Meteor. Soc.,61, 1374–1387.Google Scholar
  22. Mahfouf, J. F., Richard, E., Mascart, P., 1987a: The influence of soil and vegetation on the development of mesoscale circulations.J. Climate Appl. Meteor.,26, 1483–1495.Google Scholar
  23. Mahfouf, J. F., Richard, E., Mascart, P., Nickerson, E. C., Rosset, R., 1987b: A comparative study of various parameterizations of the planetary boundary layer in a numerical mesoscale model.J. Climate Appl. Meteor.,26, 1671–1695.Google Scholar
  24. Mahrer, Y., Pielke, R. A., 1977: The effects of topography on the sea and land breezes in a two-dimensional numerical model.Mon. Wea. Rev.,105, 1151–1162.Google Scholar
  25. Meteorological Office, 1962:Weather in the Mediterranean. Air Ministry, Vol. 1, 362 pp.Google Scholar
  26. Nickerson, E. C., Richard, E., Rosset, R., Smith, D. R., 1986: The numerical simulation of clouds, rain and airflow over the Vosges and Black forest mountain: a meso-β model with parameterized microphysics.Mon. Wea. Rev.,114, 398–414.Google Scholar
  27. Paccagnella, T., Tibaldi, S., Buizza, R., Scoccianti, S., 1992: High-resolution numerical modelling of convective precipitation over Northern Italy. Meteorol. Atmos. Phys.,50, 143–163.Google Scholar
  28. Pinty, J. P., 1984:Une méthode variationnelle d'ajustment des champs de masse et de vent. Note 72 de I'I.O.P.G., Université de Clermont II.Google Scholar
  29. Pinty, J. P., Mascart, P., Richard, E., Rosset, R., 1989: An investigation of mesoscale flows induced by vegetation inhomogeneities using an evapotranspiration model calibrated against HAPEX-MOBILHY data.J. Appl. Meteor.,28, 976–992.Google Scholar
  30. Ramis, C., Jansá, A., Alonso, S., Heredia, M. A., 1986: Convection over the western Mediterranean. Synoptic study and remote observation.Rev. de Meteorología.,7, 59–82.Google Scholar
  31. Ramis, C., Llasat, M. C., Genovés, A., Jansá, A., 1994: The October-1987 floods in Catalonia: Synoptic and Mesoscale Mechanisms.Meteor. Applicat. 1, 337–350.Google Scholar
  32. Ramis, C., Alonso, S., Llasat, M. C., 1995: A comparative study of two cases of heavy rain in Catalonia.Surv. in Geophys. 16, 141–161.Google Scholar
  33. Ramis, C., Romero, R., 1995: A first numerical simulation of the development and structure of the sea breeze in the island of Mallorca.Ann. Geophys.,13, 981–994.Google Scholar
  34. Raymond, D. J., Blyth, A. M., 1986: A stochastic model for nonprecipitating cumulus clouds.J. Atmos. Sci.,43, 2708–2718.Google Scholar
  35. Richard, E., Mascart, P., Nickerson, E. C., 1989: The role of surface friction in downslope windstorms.J. Appl. Meteor.,28, 241–251.Google Scholar
  36. Riosalido, R., 1990:Characterization of mesoscale convective systems by satellite pictures during PREVIMET MEDITERRANEO-89. Segundo Simposio Nacional de Predicción. Instituto Nacional de Meteorología, Apartado 285, 28071, Madrid, 135–148.Google Scholar
  37. Romero, R., Alonso, S., Nickerson, E. C., Ramis, C., 1995: Influence of vegetation on the development and structure of mountain waves.J. Appl. Meteor.,3, 2230–2242.Google Scholar
  38. Romero, R., Ramis, C., Alonso, S., 1997: Numerical simulation of an extreme rainfall event in Catalonia: Role of orography and evaporation from the sea.Quart. J. Roy. Meteor. Soc.,123, 537–559.Google Scholar
  39. Romero, R., Ramis, C., Alonso, S., Doswell III, C. A., Stensrud, D. J., 1998: Mesoscale model simulations of three heavy precipitation events in the western Mediterranean region.Mon. Wea. Rev., (in press).Google Scholar
  40. Shapiro, R., 1970: Smoothing, filtering and boundary effects.Rev. Geophys. Space Phys.,8, 359–387.Google Scholar
  41. Smith, R. B., 1989:Hydrostatiic Airflow over Mountains. (Advances in Geophysics, Vol. 31) San Diego, California: Academic Press, 1–41.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • R. Romero
    • 1
  • C. Ramis
    • 1
  • S. Alonso
    • 1
  1. 1.Meteorology Group, Department de FísicaUniversitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations