Meteorology and Atmospheric Physics

, Volume 46, Issue 1–2, pp 91–99 | Cite as

A cold air lake formation in a basin — a simulation with a mesoscale numerical model

  • T. Vrhovec


A formation of a cold air lake in a basin is studied with a mesometeorological model.

A dynamic Boussinesq hydrostatic mesoscale numerical model is developed in a staggered orthogonal grid with a horizontal resolution of 1 km and with a varying vertical grid. The topography is presented in a block shape so that computation levels are horizontal.

The mesometeorological model is tested in three idealized topography cases (a valley, a single mountain, a basin) and test results are discussed.

In an alpine basin surrounded by mountains and plateaus the air is supposed to be stagnant at the beginning of the night. Due to differences in radiation cooling an inversion layer is formed in the basin and local wind circulation is studied by model simulations.


Waste Water Water Pollution Horizontal Resolution Local Wind Inversion Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arakawa, A., Lamb, V. R., 1977: A potential enstrophy and energy conserving scheme for shallow water equations.Mon. Wea. Rev.,109, 18–36.Google Scholar
  2. Archives HMZRS: Archives Hidrometeorologicalinstitute Republic Slovenia, Ljubljana.Google Scholar
  3. Bauer, H., 1979: Abschätzung der bodennahen turbulenten Wärmeströme in ihrer Abhängigkeit von synoptischen Größen und Standortparametern, Diplomarbeit, Institut für Meteorologie, Tech. Hochsch. Darmstadt.Google Scholar
  4. Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of noctural inversion.Bull. Amer. Meteor. Soc.,83, 283–290.Google Scholar
  5. Brown, R. A., 1974. Analytical methods in planetary boundary layer modelling. London: Hilger, 147 pp.Google Scholar
  6. Dickerson, M. H., Guidksen, P. H., 1980. ASCOTFY-1979 Progress Reprot. UCRL-52899, LLNL, Livermore, California.Google Scholar
  7. Mahrer, Y., Pielke, R. A. 1977: A numerical study of the air flow over irregular terrain.Contrib. Atmos. Phys.,50, 98–113.Google Scholar
  8. Mesinger, F., 1984: A blocking technique for representation of mountains in atmospheric models.Rivista di Meteor. Aeronautica,44, 195–202.Google Scholar
  9. Pielke, R. A., 1984:Mesoscale Meteorological Modeling. Orlando: Academic Press, 612 pp.Google Scholar
  10. Petkovšek, Z., 1978: Zones of convergence and local air flow in valleys and basins.Veroeff. Schweitz. Meteor. Zentralanst.,40, 92–96.Google Scholar
  11. Tatsumi, Y., 1984: Time integration methods used in atmospheric models, WMO SMRWPR pub. series8, 43–99.Google Scholar
  12. Wallbaum, F., 1982: Numerische Simulation atmosphärischer Strömungen im Mesoscale Gamma, Thesis, TH Darmstadt.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • T. Vrhovec
    • 1
  1. 1.FNT, Department of PhysicsUniversity LjubljanaLjubljanaYugoslavia

Personalised recommendations