Skip to main content
Log in

The inverse conjecture for the revised Enskog equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

It is shown that the pair correlation function (which is by definition the high-density factor in the revised Enskog theory) is not always a well-defined functional of the local density. Moreover, for a finite system with periodic boundary conditions and in the space homogeneous case, this function, computed at the contact value, is bounded at the maximum allowed density (i.e., a densityn max such that, in one dimension, 1/a−1/Ln max<1/a; equality sign, which corresponds to the usual close-packing density for whichL/a is an integer, being included as a particular case). At least for the one-dimensional gas model this finite value is shown to approach infinity in the thermodynamic and in the hydrodynamic limits. A new form for the revised Enskog equation, which does not depend on the inverse conjecture, is finally given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Cercignani,Mathematical Methods in Kinetic Theory (Plenum Press, New York, 1969; 2nd ed., 1990).

    Google Scholar 

  2. C. Cercignani,The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988).

    Google Scholar 

  3. D. Enskog, Kinetische theorie,Kgl. Svenska Vet. Akad. Handl. 63(4):3–44 (1921) [Transl. in S. Brush,Kinetic Theory, Vol. 3 (Pergamon Press, New York, 1972)].

    Google Scholar 

  4. H. Van Beijerenand M. Ernst, The modified Enskog equation,Physica 68:437–456 (1973).

    Google Scholar 

  5. P. Résibois,H-theorem for the (modified) non-linear Enskog equation,J. Stat. Phys. 19:593–609 (1978).

    Google Scholar 

  6. P. Résibois, The linearized (modified) Enskog equation: The approach to equilibrium,Physica 94A:1–19 (1978).

    Google Scholar 

  7. C. Cercignani and M. Lampis, On the kinetic theory of a dense gas of rough spheres,J. Stat. Phys. 53:655–672 (1988).

    Google Scholar 

  8. J. Piasecki, LocalH-theorem for the revised Enskog equation,J. Stat. Phys. 48:1203–1211 (1987).

    Google Scholar 

  9. M. Mareschal, J. Blawzdziewicz, and J. Piasecki, Local entropy production from the revised Enskog equation: General formulation for inhomogeneous fluids,Phys, Rev. Lett. 52:1169–1172 (1984).

    Google Scholar 

  10. C. Cercignani, Existence of global solutions for the space inhomogeneous Enskog equation,Transport Theory Stat. Phys. 16:213–221 (1987).

    Google Scholar 

  11. L. Arkeryd, On the Enskog equation in two space variables,Transport Theory Stat. Phys. 15:673–691 (1986).

    Google Scholar 

  12. C. Cercignani, Small data existence for the Enskog equation inL 1,J. Stat. Phys. 51:291–297 (1988).

    Google Scholar 

  13. L. Arkeryd, On the Enskog equation with large initial data,SIAM J. Math. Anal. 21:631–646 (1990).

    Google Scholar 

  14. L. Arkeryd and C. Cercignani, On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation,Commun. PDE 14:1071–1089 (1989).

    Google Scholar 

  15. J. Polewczak, Global existence inL 1 for the modified nonlinear Enskog equation inR 3,J. Stat. Phys. 56:159–173 (1989).

    Google Scholar 

  16. L. Arkeryd and C. Cercignani, Global existence inL 1 for the Enskog equation and convergence of solutions to solutions of the Boltzmann equation,J. Stat. Phys. 59:845–867 (1990).

    Google Scholar 

  17. J. T. Chayes, L. Chayes, and E. H. Lieb, Inverse problem in classical statistical mechanics,Commun. Math. Phys. 93:57–121 (1984).

    Google Scholar 

  18. J. T. Chayes and L. Chayes, On the validity of the inverse conjecture in classical density functional theory,J. Stat. Phys. 36:471–188 (1984).

    Google Scholar 

  19. S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, 1960).

  20. G. Stell, Cluster expansions for classical systems in equilibrium, inThe Equilibrium Theory of Classical Fluids, H. L. Frish and J. L. Lebowitz, eds. (Benjamin, New York, 1964), Sect. II, pp. 171–266.

    Google Scholar 

  21. N. Bellomo and M. Lachowicz, Kinetic equations for dense gases. A review of physical and mathematical results,Int. J. Mod. Phys. 13:1193–1205 (1987).

    Google Scholar 

  22. J. K. Percus, Exact solution of kinetics of a model classical fluid,Phys. Fluids 12:1560–1563 (1969).

    Google Scholar 

  23. D. Ruelle,Statistical Mechanics: Rigorous Results (Addison-Wesley, 1988).

  24. E. H. Lieb and D. C. Mattiset al, Classical statistical mechanics, inMathematical Physics in One Dimension: Exactly Soluble Models of Interacting Particles, E. H. Lieb and D. C. Mattis, eds. (Academic Press, New York, 1966), pp. 1–116.

    Google Scholar 

  25. F. Giirsey, Classical statistical mechanics of a rectilinear assembly,Proc. Camb. Phil. Soc. 46:182–194 (1950).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannone, M., Cercignani, C. The inverse conjecture for the revised Enskog equation. J Stat Phys 63, 363–387 (1991). https://doi.org/10.1007/BF01026610

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01026610

Key words

Navigation