Journal of Statistical Physics

, Volume 63, Issue 1–2, pp 345–361 | Cite as

The homogeneous Boltzmann hierarchy and statistical solutions to the homogeneous Boltzmann equation

  • L. Arkeryd
  • S. Caprino
  • N. Ianiro


An existence and uniqueness result for the homogeneous Boltzmann hierarchy is proven, by exploiting the “statistical solutions” to the homogeneous Boltzmann equation.

Key words

Boltzmann hierarchy Boltzmann equation statistical solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Cercignani,The Boltzmann Equation and its Applications (Springer-Verlag, New York, 1988).Google Scholar
  2. 2.
    O. E. Lanford,Time Evolution of Large Classical Systems (Lecture Notes in Physics 38, (Springer-Verlag, Berlin, 1975).Google Scholar
  3. 3.
    R. Illner and M. Pulvirenti, Global validity of the Boltzmann equation: Erratum and improved result,Commun. Math. Phys. 121:143–146 (1989).Google Scholar
  4. 4.
    R. Esposito and M. Pulvirenti, Statistical solutions of the Boltzmann equation near the equilibrium,Transp. Theory Stat. Phys. 18:51–70 (1989).Google Scholar
  5. 5.
    L. Arkeryd, R. Esposito, and M. Pulvirenti, The Boltzmann equation for weakly inhomogeneous data,Commun. Math. Phys. 111:393–407 (1987).Google Scholar
  6. 6.
    L. Arkeryd, Existence theorems for certain kinetic equations and large data,Arch. Rat. Mech. Anal. 103:139–149 (1988).Google Scholar
  7. 7.
    T. Carleman,Problèmes Mathématiques dans la Théorie cinétique des Gaz (Almquist & Wiksells, Uppsala, 1957).Google Scholar
  8. 8.
    L. Arkeryd, On the Boltzmann equation,Arch. Rat. Mech. Anal. 45:1–34 (1972).Google Scholar
  9. 9.
    H. Spohn, Boltzmann equation and Boltzmann hierarchy, inLecture Notes in Mathematics, No. 1048 ((Springer-Verlag, Berlin, 1984), pp. 207–220.Google Scholar
  10. 10.
    H. Spohn, On the Vlasov hierarchy,Math. Meth. Appl. Sci. 3:445–455 (1981).Google Scholar
  11. 11.
    M. Pulvirenti and J. Wick, On the statistical solutions of Vlasov Poisson equations in two dimensions,J. Appl. Math. Phys. (ZAMP) 36:508–519 (1985).Google Scholar
  12. 12.
    C. Foias, Statistical study of Navier Stokes equations I,Rend. Sem. Mat. Univ. Padova 48:220–348 (1973).Google Scholar
  13. 13.
    E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products,Trans. Am. Math. Soc. 80:470–501 (1956).Google Scholar
  14. 14.
    G. Choquet and P. A. Meyer, Existence et unicité des représentations intégrales dans les convexes compacts quelconques,Ann. Inst. Fourier 13:139–154 (1963).Google Scholar
  15. 15.
    D. Robinson and D. Ruelle, Mean entropy of states in classical statistical mechanics,Commun. Math. Phys. 5:288–300 (1967).Google Scholar
  16. 16.
    T. Elmroth, The Boltzmann equation; On existence and qualitative properties, Thesis, Department of Mathematics, Chalmers University, Göteborg (1984).Google Scholar
  17. 17.
    Di Blasio, Differentiability of spatially homogeneous solutions of the Boltzmann equation,Commun. Math. Phys. 10:739–752 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • L. Arkeryd
    • 1
  • S. Caprino
    • 2
    • 3
  • N. Ianiro
    • 4
  1. 1.Department of MathematicsChalmers University of Technology and UniversityGöteborgSweden
  2. 2.Dipartimento di Matematica Pura e Applicata dell'Università di L'Aquila, CoppitoL'AquilaItaly
  3. 3.Dipartimento di Matematica dell'Università di Roma “La Sapienza,”RomeItaly
  4. 4.Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate dell'Università di Roma “La Sapienza,”RomeItaly

Personalised recommendations