Skip to main content
Log in

High-density properties of hard spheres within a modified Percus-Yevick theory: The role of thermodynamic consistency

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using an integral-equation approach based upon an approximation for the tail function, the equilibrium properties of a system of hard spheres are studied with special concern for the behavior in the region of close packing. The closure adopted is such that full, internal consistency is ensured in the thermodynamics of the model with respect to both the two zero-separation theorems as well as to the more standard virial and fluctuation routes to the equation of state. The scheme also makes use of the continuity properties of the tail function and of the cavity distribution function at contact. These properties are explictly tested in the low-density limit up to the fourth derivative. The theory generates an equilibrium branch bounded on the high-density side by a point corresponding to a packing fractionη≃0.78, a value which closely matches Rogers' least upper bound for the densest packing of spheres. The pair structure of the fluid in the state of random close packing is also compared to the type of local order predicted by the theory at similar densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Giunta, C. Caccamo, and P. V. Giaquinta,Phys. Rev. A 31:2477 (1985).

    Google Scholar 

  2. P. V. Giaquinta, G. Giunta, and G. Malescio,Phys. Rev. A 35:3564 (1987).

    Google Scholar 

  3. Y. Song, R. M. Stratt, and E. A. Mason,J. Chem. Phys. 88:1126 (1988).

    Google Scholar 

  4. M. Alexanian,Phys. Rev. A 37:4527 (1988).

    Google Scholar 

  5. M. de Llano,Phys. Rev. A 37:4529 (1988).

    Google Scholar 

  6. W. G. Hoover and F. H. Ree,J. Chem. Phys. 49:3609 (1968), and references contained therein.

    Google Scholar 

  7. J. K. Percus and G. J. Yevick,Phys. Rev. 110:1 (1957).

    Google Scholar 

  8. M. S. Wertheim,Phys. Rev. Lett. 10:321 (1963).

    Google Scholar 

  9. E. Thiele,J. Chem. Phys. 39:474 (1963).

    Google Scholar 

  10. J. G. Berryman,Phys. Rev. A 27:1053 (1983).

    Google Scholar 

  11. J. P. Hansen and I. R. McDonald,Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).

    Google Scholar 

  12. R. D. Groot, J. P. van der Eerden, and N. M. Faber,J. Chem. Phys. 87:2263 (1987).

    Google Scholar 

  13. J. K. Percus, inThe Liquid State of Matter: Fluids, Simple and Complex, E. W. Montroll and J. L. Lebowitz, eds. (North-Holland, Amsterdam, 1982).

    Google Scholar 

  14. E. Waisman,Mol. Phys. 25:45 (1973).

    Google Scholar 

  15. N. F. Carnahan and K. E. Starling,J. Chem. Phys. 51:635 (1969).

    Google Scholar 

  16. W. G. Hoover and J. C. Poirier,J. Chem. Phys. 37:1041 (1962).

    Google Scholar 

  17. E. Meeron and A. J. F. Siegert,J. Chem. Phys. 48:3139 (1968).

    Google Scholar 

  18. J. K. Percus, inThe Equilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (Benjamin, New York, 1964), Chapter II, p. 33.

    Google Scholar 

  19. M. W. Liao and J. K. Percus,Mol. Phys. 56:1307 (1985).

    Google Scholar 

  20. D. Henderson and E. W. Grundke,J. Chem. Phys. 63:601 (1975).

    Google Scholar 

  21. J. S. Høye and G. Stell,Mol. Phys. 32:195 (1976).

    Google Scholar 

  22. Y. Zhou and G. Stell,J. Stat. Phys. 52:1389 (1988).

    Google Scholar 

  23. G. Stell,Physica 24:517 (1963).

    Google Scholar 

  24. F. H. Ree, R. N. Keeler, and S. L. McCarthy,J. Chem. Phys. 44:3407 (1966).

    Google Scholar 

  25. B. R. A. Nijober and L. van Hove,Phys. Rev. 85:777 (1952).

    Google Scholar 

  26. J. J. Erpenbeck and W. W. Wood,J. Stat. Phys. 35:321 (1984).

    Google Scholar 

  27. C. A. Rogers,Packing and Covering (Cambridge University Press, Cambridge, 1964).

    Google Scholar 

  28. P. Tarazona,Phys. Rev. A 31:2672 (1985).

    Google Scholar 

  29. Y. Singh, J. P. Stoessel, and P. G. Wolynes,Phys. Rev. Lett. 54:1059 (1985).

    Google Scholar 

  30. M. Wertheim, inThe Equilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (Benjamin, New York, 1964), Chapter II, p. 281.

    Google Scholar 

  31. L. V. Woodcock,Ann. N. Y. Acad. Sci. 371:274 (1981).

    Google Scholar 

  32. R. J. Speedy,Mol. Phys. 62:510 (1987).

    Google Scholar 

  33. C. H. Bennett,J. Appl. Phys. 43:2727 (1972).

    Google Scholar 

  34. J. D. Bernal and J. Mason,Nature 188:910 (1960).

    Google Scholar 

  35. S. Ciccariello,Phys. Lett. A 114:313 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giaquinta, P.V., Giunta, G. & Malescio, G. High-density properties of hard spheres within a modified Percus-Yevick theory: The role of thermodynamic consistency. J Stat Phys 63, 141–165 (1991). https://doi.org/10.1007/BF01026597

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01026597

Key words

Navigation