Skip to main content
Log in

Effective-field theory of spin glasses and the coherent-anomaly method. I

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new cluster-effective-field theory of spin glasses is formulated. Basic formulas for the spin-glass transition point and the spin-glass susceptibility in the high-temperature phase are obtained. The present theory combined with the coherent-anomaly method is shown to be useful to estimate the true critical point and the nonclassical critical exponent of a spin-glass transition. Concerning the two-dimensional ±J model, we have γ s =5.2(1) forT SG=0, which agrees well with the data by some other authors. As for the threedimensional±J model, the present tentative analysis givesT SG=1.2(1)(J/k B) and γ s =4(1), but more extensive calculations are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Edwards and P. W. Anderson, Theory of spin glasses,J. Phys. F 5:965 (1975).

    Google Scholar 

  2. K. Binder and A. P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions,Rev. Mod. Phys. 58:801 (1986).

    Google Scholar 

  3. D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass,Phys. Rev. Lett. 35:1972 (1975).

    Google Scholar 

  4. G. Parisi, Infinite number of order parameters for spin-glasses,Phys. Rev. Lett. 43:1754 (1979); A sequence of approximated solutions to the S-K model for spin glasses,J. Phys. A 13:L115 (1980); The order parameter for spin glasses: A function on the interval 0–1,J. Phys. A 13:1101 (1980); Magnetic properties of spin glasses in a new mean field theory, J. Phys. A 13:1887 (1980); Mean field theory for spin glasses,Phys. Rep. 67:25 (1980).

    Google Scholar 

  5. J. H. Chen and T. C. Lubensky, Mean field andε-expansion study of spin glasses,Phys. Rev. B 16:2106 (1977).

    Google Scholar 

  6. M. Suzuki, Statistical mechanical theory of cooperative phenomena. I. General theory of fluctuations, coherent anomalies and scaling exponents with simple applications to critical phenomena,J. Phys. Soc. Jpn. 55:4205 (1986).

    Google Scholar 

  7. M. Suzuki, M. Katori, and X. Hu, Coherent anomaly method in critical phenomena. I,J. Phys. Soc. Jpn. 56:3092 (1987).

    Google Scholar 

  8. M. Katori and M. Suzuki, Coherent anomaly method in critical phenomena. II. Applications to the two- and three-dimensional Ising models,J. Phys. Soc. Jpn. 56:3113 (1987).

    Google Scholar 

  9. S. Katsura, S. Inawashiro, and S. Fujiki, Spin glasses for the infinitely long ranged bond Ising model and for the short ranged binary bond Ising model without use of the replica method,Physica A 99:193 (1979).

    Google Scholar 

  10. M. Suzuki, Statistical mechanical theory of cooperative phenomena. II. Super-effectivefield theory with applications to exotic phase transitions,J. Phys. Soc. Jpn. 57:2310 (1988); Super-effective-field theory and exotic phase transitions in spin systems,J. Phys. (Paris)C8:1519 (1988).

    Google Scholar 

  11. M. Suzuki, Super-effective-field CAM theory of strongly correlated electron and spin systems, inRecent Progress in Many-Body Theories, Y. Avishai, ed. (Plenum, New York, to appear).

  12. N. Kawashima and M. Suzuki, Chiral phase transition of planear antiferromagnets analyzed by the super-effective-field theory,J. Phys. Soc. Jpn. 58:3123 (1989).

    Google Scholar 

  13. G. Toulouse, Theory of the frustration effect in spin glasses. I,Commun. Phys. 2:115 (1977); E. Fradkin, B. A. Huberman, and S. H. Shenker, Gauge symmetries in random magnetic systems,Phys. Rev. B 18:4789 (1978).

    Google Scholar 

  14. F. Matsubara and M. Sakata, Theory of random magnetic mixture III-Glass-like phase,Prog. Theor. Phys. 55:672 (1976); S. Katsura and S. Fujiki, Distribution of spins and the thermodynamic properties, in the glass-like (spin glass) phase of random Ising bond models,J. Phys. C 12:1087 (1979); S. Katsura, Theory of spin glass by the method of the distribution function of an effective field,Prog. Theor. Phys. Suppl. 87:139 (1986); Errata,Prog. Theor. Phys. 79:251 (1988); M. Sasaki and S. Katsura, The asymmetric continuous distribution function of the effective field of the Ising model in the spin glass and the ferromagnetic states on the Bethe lattice,Physica A 157:1195 (1989); C. Kwon and D. J. Thouless, Ising spin glass at zero temperature on the Bethe lattice,Phys. Rev. B 37:7649 (1988).

    Google Scholar 

  15. M. Suzuki, Phenomenological theory of spin-glasses and some rigorous results,Prog. Theor. Phys. 58:1151 (1977).

    Google Scholar 

  16. S. Katsura, Random mixture of the Ising magnets in a magnetic field,Prog. Theor. Phys. 55:1049 (1976); S. Fujiki and S. Katsura, Nonlinear susceptibility in the spin glass,Prog. Theor. Phys. 65:1130 (1981).

    Google Scholar 

  17. M. E. Fisher and M. N. Barber, Scaling theory for finite-size effects in the critical region,Phys. Rev. Lett. 28:1516 (1972).

    Google Scholar 

  18. N. Ito and M. Suzuki, Size-dependence of coherent anomalies in self-consistent cluster approximations,Phys. Rev. B 43 (1991).

  19. W. L. McMillan, Monte Carlo simulation of the two-dimensional random (±J) Ising model,Phys. Rev. B 28:5216 (1983); A. P. Young, Monte Carlo studies of short-range Ising spin glasses in zero field,J. Phys. C 18:L517 (1984).

    Google Scholar 

  20. R. R. P. Singh and S. Chakravarty, Critical behavior of an Ising spin-glass,Phys. Rev. Lett. 57:245 (1986); High-temperature series expansion for spin glasses. I. Derivation of the series, II. Analysis of the series,Phys. Rev. B 36:546, 559 (1987); Critical exponents for Ising spin glasses through high-temperature series analysis,J. Appl. Phys. 61:4095 (1987).

    Google Scholar 

  21. R. H. Swendsen and J. S. Wang, Replica Monte Carlo simulation of spin-glasses,Phys. Rev. Lett. 57:2607 (1986).

    Google Scholar 

  22. R. N. Bhatt and A. P. Young, Numerical studies of Ising spin glasses in two, three, and four dimensions,Phys. Rev. B 37:5606 (1988).

    Google Scholar 

  23. A. T. Ogielski and I. Morgenstern, Critical behavior of three-dimensional Ising spin-glass model,Phys. Rev. Lett. 54:928 (1985); Critical behavior of three-dimensional Ising model of spin glass,J. Appl. Phys. 57:3382 (1985); R. N. Bhatt and A. P. Young, Search for a transition in the three-dimensional ±J Ising spin-glass,Phys. Rev. Lett. 54:924 (1985); A. T. Ogielski, Dynamics of three-dimensional Ising spin glasses in thermal equilibrium,Phys. Rev. B 32:7384 (1985).

    Google Scholar 

  24. A. J. Bray and M. A. Moore, Lower critical dimension of Ising spin glasses: A numerical study,J. Phys. C 17:L463 (1984); R. R. P. Singh and M. E. Fisher, Short-range Ising spin glasses in general dimensions,J. Appl. Phys.63:3994 (1988); M. E. Fisher and R. R. P. Singh, Critical points, large-dimensionality expansions, and the Ising spin glass, inDisorder in Physical Systems, G. Grimmett and D. J. A. Welsh, eds. (Oxford University Press, 1990), p. 87.

    Google Scholar 

  25. W. L. McMillan, Scaling theory of Ising spin glasses,J. Phys. C 17:3179 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatano, N., Suzuki, M. Effective-field theory of spin glasses and the coherent-anomaly method. I. J Stat Phys 63, 25–46 (1991). https://doi.org/10.1007/BF01026590

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01026590

Key words

Navigation