Journal of Statistical Physics

, Volume 58, Issue 5–6, pp 1151–1163 | Cite as

On the Bose gas with local mean-field interaction

  • Manfred Schröder
Articles

Abstract

A Bose gas model is considered where the interaction term is proportional to the integral over the square of the local particle density. This model exhibits a phase transition with the same critical behavior as the usual mean-field (imperfect) Bose gas, but only generalized condensation may occur, due to boundary conditions.

Key words

Bose gas local mean-field interaction boundary conditions local particle density ground state generalized Bose condensation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. B. Davies, The thermodynamic limit for an imperfect boson gas,Commun. Math. Phys. 28:69–86 (1972).Google Scholar
  2. 2.
    M. Fannes and A. Verbeure, The condensed phase of the imperfect Bose gas,J. Math. Phys. 21:1809 (1980).Google Scholar
  3. 3.
    M. van den Berg, J. T. Lewis, and Ph. de Smedt, Condensation in the imperfect boson gas,J. Stat. Phys. 37:697–707 (1984).Google Scholar
  4. 4.
    M. van den Berg, J. T. Lewis, and J. V. Pulè, The large deviations principle and some models of an interacting boson gas,Commun. Math. Phys. 118:61–85 (1988).Google Scholar
  5. 5.
    M. van den Berg, J. T. Lewis, and J. V. Pulè, Large deviations and the boson gas, DIAS-STP-87-28.Google Scholar
  6. 6.
    J. T. Lewis, The large deviations principle in statistical mechanics: An expository account, DIAS-STP-87-26.Google Scholar
  7. 7.
    J. T. Lewis, Why do bosons condense?, DIAS-STP-86-12.Google Scholar
  8. 8.
    J. T. Lewis, J. V. Pulè, and Ph. de Smedt, The persistence of boson condensation in the van der Waals limit, preprint, Katholieke Universiteit Leuven.Google Scholar
  9. 9.
    Ph. de Smedt and V. A. Zagrebnov, Van der Waals limit of an interacting Bose gas in a weak external field,Phys. Rev. A 35:4763–4769 (1987).Google Scholar
  10. 10.
    M. van den Berg, J. T. Lewis, and J. V. Pulè, A general theory of Bose-Einstein condensation,Helv. Phys. Acta 59:1271–1288 (1986).Google Scholar
  11. 11.
    D. W. Robinson, Bose-Einstein condensation with attractive boundary conditions,Commun. Math. Phys. 50:53 (1976).Google Scholar
  12. 12.
    M. Abramowitz, I. A. Stegun,et al., Handbook of Mathematical Functions (NBS Applied Series, New York, 1964).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Manfred Schröder
    • 1
  1. 1.Sektion MathematikKarl-Marx-Universität LeipzigLeipzigGerman Democratic Republic

Personalised recommendations