Journal of Statistical Physics

, Volume 58, Issue 5–6, pp 1109–1126 | Cite as

On the structure of Mandelbrot's percolation process and other random cantor sets

  • F. M. Dekking
  • R. W. J. Meester


We consider generalizations of Mandelbrot's percolation process. For the process which we call the random Sierpinski carpet, we show that it passes through several different phases as its parameter increases from zero to one. The final section treats the percolation phase.

Key words

Percolation process random fractal set random substitution Hausdorff dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. T. Chayes, L. Chayes, and R. Durrett, Connectivity properties of Mandelbrot's percolation process,Prob. Theory Rel. Fields 77:307–324 (1988).Google Scholar
  2. 2.
    F. M. Dekking, Recurrent sets,Adv. Math. 44:78–104 (1982).Google Scholar
  3. 3.
    F. M. Dekking and G. R. Grimmett, Superbranching processes and projections of random Cantor sets,Prob. Theory Rel. Fields 78:335–355 (1988).Google Scholar
  4. 4.
    K. Falconer, Random fractals,Math. Proc. Cambr. Phil. Soc. 100:559–582 (1986).Google Scholar
  5. 5.
    K. Falconer, Projections of random Cantor sets,J. Theor. Prob. 2:65–70 (1989).Google Scholar
  6. 6.
    G. R. Grimmett,Percolation (Springer-Verlag, Berlin, 1989).Google Scholar
  7. 7.
    B. B. Mandelbrot,The Fractal Geometry of Nature (Freeman, San Francisco, 1983).Google Scholar
  8. 8.
    G. Rozenberg and A. Salomaa,The Mathematical Theory of L-Systems (Academic Press, New York, 1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • F. M. Dekking
    • 1
  • R. W. J. Meester
    • 1
  1. 1.Delft University of TechnologyThe Netherlands

Personalised recommendations