Journal of Statistical Physics

, Volume 58, Issue 5–6, pp 863–883 | Cite as

A stochastic return map for stochastic differential equations

  • Jeffrey B. Weiss
  • Edgar Knobloch
Articles

Abstract

A method is presented for constructing a stochastic return map from a stochastic differential equation containing a locally stable limit cycle and small-amplitude [O(ε)] additive Gaussian colored noise. The construction is valid provided the correlation time isO(ε) orO(1). The effective noise in the return map has nonzeroO(ε2) mean and is state dependent. The method is applied to a model dynamical system, illustrating how the effective noise in the return map depends on both the original noise process and the local deterministic dynamics.

Key words

Stochastic map stochastic differential equation limit cycle Gaussian colored noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Arnold,Stochastic Differential Equations: Theory and Applications (Wiley, New York, 1974).Google Scholar
  2. 2.
    Z. Schuss,Theory and Applications of Stochastic Differential Equations (Wiley, New York, 1980).Google Scholar
  3. 3.
    N. G. Van Kampen,Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).Google Scholar
  4. 4.
    L. Arnold and R. Lefever, eds.,Stochastic Nonlinear Systems in Physics, Chemistry, and Biology (Springer-Verlag, Berlin, 1981).Google Scholar
  5. 5.
    W. Horsthemke and R. Lefever,Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (Springer-Verlag, Berlin, 1984).Google Scholar
  6. 6.
    B. S. White,SIAM J. Appl. Math. 32:666 (1977).Google Scholar
  7. 7.
    M. Mangel,SIAM J. Appl. Math. 38:120 (1980).Google Scholar
  8. 8.
    H. D. Vollmer and H. Risken,Z. Physik B 37:343 (1980).Google Scholar
  9. 9.
    E. Ben-Jacob, D. J. Bergman, B. J. Matkowsky, and Z. Schuss,Phys. Rev. A 26:2805 (1982).Google Scholar
  10. 10.
    H. D. Vollmer and H. Risken,Z. Physik B 52:259 (1983).Google Scholar
  11. 11.
    P. Jung and H. Risken,Z. Physik B 54:357 (1984).Google Scholar
  12. 12.
    R. Cristiano and P. Silvestrini,J. Appl. Phys. 59:1401 (1986).Google Scholar
  13. 13.
    R. Graham and T. Tél,Phys. Rev. A 33:1322 (1986).Google Scholar
  14. 14.
    J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer-Verlag, Berlin, 1983).Google Scholar
  15. 15.
    G. Meyer-Kress and H. Haken,J. Stat. Phys. 26:149 (1981).Google Scholar
  16. 16.
    J. P. Crutchfield, J. D. Farmer, and B. A. Huberman,Phys. Rep. 92:45 (1982).Google Scholar
  17. 17.
    K. Wiesenfeld,J. Stat. Phys. 38:1071 (1985).Google Scholar
  18. 18.
    C. Knessl, B. J. Matkowsky, Z. Schuss, and C. Tier,J. Stat. Phys. 42:169 (1986).Google Scholar
  19. 19.
    J. B. Weiss,Phys. Rev. A 35:879 (1987).Google Scholar
  20. 20.
    P. Talkner, P. Hänggi, E. Freidkin, and D. Trautmann,J. Stat. Phys. 48:231 (1987).Google Scholar
  21. 21.
    E. Knobloch and J. B. Weiss, inNoise in Nonlinear Dynamical Systems, Vol. 2, F. Moss and P. V. E. McClintock, eds. (Cambridge University Press, Cambridge, 1989).Google Scholar
  22. 22.
    A. Carverhill, inLyapunov Exponents, L. Arnold and V. Wihstutz, eds. (Springer-Verlag Berlin, 1986), p. 292.Google Scholar
  23. 23.
    C. W. Gardiner,Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1985).Google Scholar
  24. 24.
    J. B. Weiss, Stochastic and Deterministic Oscillations, Thesis, University of California, Berkeley (1988).Google Scholar
  25. 25.
    F. Ledrappier and L.-S. Young,Commun. Math. Phys. 117:529 (1988).Google Scholar
  26. 26.
    H. Kunita, inProc. Ecole d' Eté de Probabilités de Saint-Flour XII 1982, P.-L. Hennequin, ed. (Springer-Verlag, Berlin, 1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Jeffrey B. Weiss
    • 1
  • Edgar Knobloch
    • 1
  1. 1.Physics DepartmentUniversity of CaliforniaBerkeley

Personalised recommendations