Skip to main content
Log in

Elastic constants of two dental porcelains

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The development of stress that affects the bonding in porcelain-fused-to-metal (PFM) systems can be influenced by the temperature dependence of the elastic constants of both systems. Instead of using the normal, static procedure, e.g. determining the slope of a stress-strain curve, and measuring the lateral and vertical strains, in this study the sonic resonance technique was used to determine the elastic moduli for two dental bodyporcelains. The sonic resonance technique involves the determination of both the flexural as well as the torsional resonance frequencies. From these values both Young's,Y, and shear moduli,G, are determined. Since two elastic constants are sufficient to describe completely the elastic response of isotropic materials, it was also possible to compute, by usingY andG, the bulk modulus,B, and the Poisson's ratio. Resonant frequency measurements taken at elevated temperatures resulted in correspondingly lower values for the elastic constants. Young's and shear moduli for two dental porcelains obtained in the range from 20° C (293 K) to 500° C (773 K) are presented in this study. These data may in the future be used for refined stress calculations in PFM systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. Casciani, R. P. Whitlock, J. A. Tesk andE. Parry,J. Dent. Res. Special Issue A 59 (1980) 431.

    Google Scholar 

  2. R. P. Whitlock, J. A. Tesk, G. E. O. Widera A. Holmes andE. Parry, in Proceedings of the 4th International Precious Metals Conference, Toronto, June 1980, (Pergamon, Toronto, Canada, 1981) p. 273.

    Google Scholar 

  3. F. Forster,Z. Metallkde 29 (1937) 109.

    Google Scholar 

  4. S. Spinner,J. Amer. Ceram. Soc. 39 (1956) 113.

    Google Scholar 

  5. J. B. Wachtman Jr andD. G. Lam Jr,ibid. 42 (1959) 254.

    Google Scholar 

  6. S. Spinner,J. Res. Nat. Bur. Stand. (US) C. Eng. and Instrum. 65 (1961) 89.

    Google Scholar 

  7. J. B. Wachtman Jr, W. E. Tefft, D. G. Lam Jr andC. S. Apstein,Phys. Rev. 122 (1961) 1754.

    Google Scholar 

  8. S. Spinner andW. E. Tefft,ASTM Proc. 61 (1961) 1221.

    Google Scholar 

  9. M. O. Marlowe, unpublished MS thesis, Iowa State University (1963).

  10. W. R. Manning, unpublished PhD thesis, Iowa State University (1971).

  11. E. Schreiber, O. L. Anderson andN. Soga, “Elastic Constants and Their Measurement” (McGraw-Hill, New York, 1973) p. 82.

    Google Scholar 

  12. G. Pickett,ASTM Proc. 45 (1945) 846.

    Google Scholar 

  13. D. P. H. Hasselman, “Tables for the Computation of Shear Modulus and Young's Modulus of Rectangular Prisms” (Carborundum Co, Niagara Falls, New York, 1961).

    Google Scholar 

  14. N. N. Ault andH. F. G. Ueltz,J. Amer. Ceram. Soc. 36 (1953) 199.

    Google Scholar 

  15. M. O. Marlowe andD. R. Wilder,ibid. 48 (1965) 227.

    Google Scholar 

  16. S. Spinner, T. W. Reichard andW. E. Tefft,J. Res. Nat. Bur. Stand. (US) 64A (1960) 147.

    Google Scholar 

  17. J. B. Wachtman Jr, in “Mechanical and Thermal Properties of Ceramics”, edited by J. B. Wachtman Jr, (National Bureau of Standards Special Publication, No. 303, 1969) p. 139.

  18. S. L. Dole, unpublished MS thesis, Iowa State University (1977).

  19. J. J. Cleveland, unpublished MS thesis, Pennsylvania State University (1977).

  20. E. D. Case andJ. R. Smyth,J. Nucl. Mat. 102 (1981) 135.

    Google Scholar 

  21. E. D. Case, unpublished PhD thesis, Iowa State University (1980).

  22. E. D. Case andJ. R. Smyth,Mat. Sci. Eng. 51 (1981) 175.

    Google Scholar 

  23. E. D. Case, J. R. Smyth andO. Hunter Jr, in Proceedings of the 3rd International Symposium on the Fracture Mechanics of Ceramics, Vol. 5, University Park, July 1981, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum Press, New York, 1983) p. 507.

    Google Scholar 

  24. J. P. Berry,J. Mech. Phys. Solids 8 (1960) 194.

    Google Scholar 

  25. J. B. Walsh,J. Geophys. Res. 70 (1965) 5249.

    Google Scholar 

  26. R. L. Salganik,Mech. Solids 8 (1973) 135, English translation.

    Google Scholar 

  27. Idem, Izv. AN. SSSR, Mekhanika Tverdoga Tela 8 (1973) 149; original Russian.

    Google Scholar 

  28. B. Budiansky andR. J. O'connel,Int. J. Solids Structures 12 (1976) 81.

    Google Scholar 

  29. J. J. Cleveland andR. C. Bradt,J. Amer. Ceram. Soc. 61 (1978) 478.

    Google Scholar 

  30. J. A. Kuszyk andR. C. Bradt,ibid. 56 (1973) 420.

    Google Scholar 

  31. W. R. Manning andO. Hunter Jr,ibid. 56 (1973) 602.

    Google Scholar 

  32. E. D. Case,J. Mater. Sci. 19 (1984) 3702.

    Google Scholar 

  33. W. J. Buykx,J. Amer. Ceram. Soc. 62 (1979) 326.

    Google Scholar 

  34. R. W. Davidge andG. Tappin,J. Mater. Sci. 3 (1968) 297.

    Google Scholar 

  35. H. P. Kirchner,J. Amer. Ceram. Soc. 53 (1970) 232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On study leave from University of Göttingen, D-3400 Göttingen, West Germany.

Former NBS employee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Käse, H.R., Tesk, J.A. & Case, E.D. Elastic constants of two dental porcelains. J Mater Sci 20, 524–531 (1985). https://doi.org/10.1007/BF01026522

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01026522

Keywords

Navigation