Journal of Protein Chemistry

, Volume 8, Issue 4, pp 575–581 | Cite as

Step-wise thermal denaturation of cobrotoxin, a snake venom neurotoxin fromNaja naja atra: A proton nuclear magnetic resonance study

  • Toshiya Endo
  • Masanao Oya
  • Kyozo Hayashi
  • Tatsuo Miyazawa


Temperature dependence of proton nuclear magnetic resonance spectra has been followed for cobrotoxin, a postsynaptic neurotoxin fromNaja naja atra venom. Several aromatic amino-acid residues, including the functionally essential Trp-29 located at the tip of the central loop of the molecule, have been found to undergo a thermal structural transition above the global thermal denaturation temperature. It is suggested that a local structure around these residues behaves somehow independently of the rest of the molecule, and that such structural organization may be favorable for a conformational change of a neurotoxin molecule on binding to acetylcholine receptor.

Key words

thermal denaturation NMR cobrotoxin neurotoxin snake venom 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bystrov, V. F., Tsetlin, V. I., Karlsson, E., Pashkov, V. S., Utkin, Yu. D., Kondakov, V. I., Pluzhnikov, K. A., Arseniev, A. S., Ivanov, V. T., and Ovchinnikov, Yu. A. (1983) InToxins as Tools in Neurochemistry (Hucho, F., and Ovchinnikov, Yu. A., eds.), Walter de Gruyter, Berlin, pp. 193–233.Google Scholar
  2. Yang, C. C., Yang, H. J., and Huang, J. S. (1969).Biochim. Biophys. Acta,240, 1616–1618.Google Scholar
  3. Dobson, C. M., Evans, P. A., and Williamson, K. L. (1984).FEBS Lett. 168, 331–334.Google Scholar
  4. Dufton, M. J., and Hider, R. C. (1983).C.R.C. Crit. Rev. Biochem. 14, 113–171.Google Scholar
  5. Endo, T., and Tamiya, N. (1987).Pharmacol. Ther. 32, 403–451.Google Scholar
  6. Endo, T., Inagaki, F., Hayashi, K., and Miyazawa, T. (1979).Eur. J. Biochem. 102, 417–430.Google Scholar
  7. Endo, T., Inagaki, F., Hayashi, K., and Miyazawa, T. (1981).Eur. J. Biochem. 120, 117–124.Google Scholar
  8. Endo, T., Nakanishi, M., Furukawa, S., Joubert, F. J., Tamiya, N., and Hayashi, K. (1986).Biochemistry,25, 395–404.Google Scholar
  9. Inagaki, F., Hider, R. C., Hodges, S. J., and Drake, A. F. (1985).J. Mol. Biol. 183, 575–590.Google Scholar
  10. Hider, R. C., Drake, A. F., Ingaki, F., Williams, R. J. P., Endo, T., and Miyazawa, T. (1982).J. Mol. Biol. 158, 275–291.Google Scholar
  11. Kaneda, N., Sasaki, T., and Hayashi, K. (1977).Biochim. Biophys. Acta.,491, 53–66.Google Scholar
  12. Low, B. W., Preston, H. S., Sato, A., Rosen, L. S., Searl, J. E., Rudko, A. D., and Richardson, J. R. (1976).proc. Natl. Acad. Sci. USA 73, 2991–2994.Google Scholar
  13. Maelicke, A., Fulpius, B. W., Klett, R. P., and Reich, E. (1977).J. Biol. Chem. 252, 4811–4830.Google Scholar
  14. Tsernoglou, D., and Petsko, G. A. (1976).FEBS Lett. 68, 1–4.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Toshiya Endo
    • 1
  • Masanao Oya
    • 1
  • Kyozo Hayashi
    • 2
  • Tatsuo Miyazawa
    • 3
  1. 1.Department of Chemistry, College of TechnologyGunma UniversityKiryuJapan
  2. 2.Department of BiologyGifu Pharmaceutical UniversityGifuJapan
  3. 3.Faculty of EngineeringYokohama National UniversityYokohamaJapan

Personalised recommendations