Advertisement

Hyperfine Interactions

, Volume 12, Issue 1, pp 167–172 | Cite as

A Mössbauer study of FeC2O4·2D2O below the néel temperature

  • N. Ravi
  • R. Jagannathan
Article

Abstract

From low-temperature Mössbauer measurement on FeC2O4·2D2O the reported difference in quadrupole splitting from the simple dihydrate is inferred to be due to lattice effects. The Zeeman split spectrum has been analyzed taking into account the ‘ambiguity problem’ and the hyperfine parameters were determined to be I.S.=1.22 mm/sec; Q.S.=1.93 mm/sec; η=0.65 to 0.72; θ=90 to 83.1o and ϕ=0 to 11.8o. The principal electric field gradient axis lies along the crystal a-axis with VYY and\(\mathop H\limits^ \to\) lying along the crystal b-axis. The crystal field parameters 10Dq, Ds and Dt have been determined to be ∼ 10500, ∼ 185 and ∼ 211 cm−1, respectively.

Keywords

Thin Film Lattice Effect Field Gradient Dihydrate Crystal Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    B. Brunot, J. Chem. Phys. 61(1974)2360.Google Scholar
  2. [2]
    B.N. Srivastava, R. N. Tyagi and R. P. Singh, Phys. Abstr. 75(1972)2158.Google Scholar
  3. [3]
    B. Brunot, Chem. Phys. Lett. 29(1974)368.Google Scholar
  4. [4]
    B. Brunot, Chem. Phys. Lett. 29(1974)371.Google Scholar
  5. [5]
    L. Asch, J.P. Adloff, J.M. Friedt, and J. Danon, Chem. Phys. Lett. 5(1970)105.Google Scholar
  6. [6]
    W. Kundig, Nucl. Instr. and Meth. 48(1967)219.Google Scholar
  7. [7]
    S.V. Karyagin, Fiz. Tverd. Tela 8(1966)493.Google Scholar
  8. [8]
    J. van Dongen Torman, R. Jagannathan and J.M. Trooster, Hyp. Int. 1(1975)135.Google Scholar
  9. [9]
    T. Viegers,197 Au Mössbauer spectroscopy, Ph. D. thesis, Katholieke Universiteit, Nijmegen, The Netherlands (1976).Google Scholar
  10. [10]
    A. Rosencwaig and A. Gersho, J. Appl. Phys. 47(1976)64.Google Scholar
  11. [11]
    F. de Barros, P.S. Zory and L.E. Campbell, Phys. Lett. 7(1963)135.Google Scholar
  12. [12]
    P. Raj and V. Amirthalingham, Phys. Rev. 146(1966)590.Google Scholar
  13. [13]
    D.V.G.L. Narasimha Rao and A. Narasimha Murthy, Phys. Rev. 132(1963)961.Google Scholar
  14. [14]
    E.G. Cox, M.W. Dougill and G.A. Jeffrey, J. Chem. Soc. (1952)4854.Google Scholar
  15. [15]
    J.V. de Menezes and F. de Barros, Phys. Stat. Solidi 45a(1978)K139, and references therein.Google Scholar
  16. [16]
    R. Ingalls, Phys. Rev. 133(1964)787.Google Scholar
  17. [17]
    T.C. Gibb, J. Chem. Soc. (A)(1968)1439.Google Scholar
  18. [18]
    F.A. Cotton and M.D. Meyers, Inorg. Chem. 82(1960)5023.Google Scholar
  19. [19]
    B.N. Figgis, Introduction to ligand fields (Interscience Publications, New York, 1969) p. 209.Google Scholar
  20. [20]
    K.D. Bowers and J. Owen, Repts. Prog. Phys. 18(1955)304.Google Scholar
  21. [21]
    C.J. Ballhausan and W. Moffit, J. Inorg. Nucl. Chem. 3(1976)178.Google Scholar
  22. [22]
    C.D. Burbridge, D.M.L. Goodgame and M. Goodgame, J. Chem. Soc. (A)(1967)349.Google Scholar

Copyright information

© J.C. Baltzer Scientific Publishing Company 1982

Authors and Affiliations

  • N. Ravi
    • 1
  • R. Jagannathan
    • 1
  1. 1.School of ChemistryUniversity of HyderabadHyderabadIndia

Personalised recommendations