Advertisement

Journal of Materials Science

, Volume 20, Issue 4, pp 1237–1247 | Cite as

The correlation between the thermoelectric properties and stoichiometry in the boron carbide phase B4C-B10.5C

  • Michel Bouchacourt
  • Francois Thevenot
Papers

Abstract

Electrical conductivity, thermoelectrical power and thermal conductivity measurements on boron carbide samples show that the electrical conductivity follows the small polaron hopping theory and that thermal conductivity occurs by phonon diffusion. The evolution of these properties with carbon content illustrates the particular role played by the 13.3 at% C compound in the phase homogeneity range B10.5C to B4C. The value of the figure of merit (0.85×10−3 K at 1250 K) proves that this particular boron carbide compound could be a very interesting candidate material for high-temperature thermoelectrical conversion.

Keywords

Thermal Conductivity Electrical Conductivity Conductivity Measurement Thermoelectric Property Thermoelectrical Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Lockwood, R. Ewell andC. Wood, Proceedings 16th Intersociety Energy Conversion Engineering Conference, Atlanta, Georgia, August 1981. Vol. 2 (1981) p. 1985.Google Scholar
  2. 2.
    F. Thevenot andM. Bouchacourt,l'Industrie Céramique 732 (1979) 655.Google Scholar
  3. 3.
    M. Bouchacourt andF. Thevenot,J. Less Common Met. 82 (1981) 219.Google Scholar
  4. 4.
    M. Bouchacourt, C. Brodhag andF. Thevenot,Sci. Ceram. 11 (1981) 231.Google Scholar
  5. 5.
    M. Bouchacourt, Thèse d'Etat, Grenoble, France (1982).Google Scholar
  6. 6.
    M. Bouchacourt andF. Thevenot,J. Less Common Met. 82 (1981) 227.Google Scholar
  7. 7.
    L. J. Van Der Pauw,Philips Res. Repts. 13 (1958) 1.Google Scholar
  8. 8.
    W. J. Parker, R. J. Jenkins, C. P. Butler andG. L. Abbott,J. Appl. Phys. 32 (1961) 1679.Google Scholar
  9. 9.
    P. Degas andJ. L. Bertin,Rev. Int. Hautes Temp. et Réfract. 7 (1970) 359.Google Scholar
  10. 10.
    D. R. Stull andH. Prophet, “Janaf Thermochemical tables”, 2nd Edn. (National Bureau of Standards/US Government Printing Office, Washington) p. 37.Google Scholar
  11. 11.
    K. E. Gilchrist andS. D. Preston,High Temp. High Pres. 11 (1979) 643.Google Scholar
  12. 12.
    R. A. Murgatroyd andB. T. Kelly,Atomic Energy Rev. 15 (1977) 3.Google Scholar
  13. 13.
    R. R. Ridgway,Trans. Amer. Electrochem. Soc. 66 (1934) 117.Google Scholar
  14. 14.
    G. Vuillard andA. Luque,Compt. Rend. Acad. Sci. 260 (1965) 5282.Google Scholar
  15. 15.
    O. A. Golikova, V. K. Zaitsev, A. V. Petrov, L. S. Stil'bans andE. N. Tkalenko,Sov. Phys. Semicond. 6 (1973) 1488.Google Scholar
  16. 16.
    H. Werheit andK. De Groot,Phys. Status Solidi (b) 97 (1980) 229.Google Scholar
  17. 17.
    G. H. Reynolds andN. B. Elsner, Proceedings 16th Intersociety Energy Conversion Engineering Conference, Atlanta, Georgia, August 1981, Vol. 2 (1981) p. 1997.Google Scholar
  18. 18.
    C. Wood, Jet Propulsion Laboratory, report JPL-D-302 (1982).Google Scholar
  19. 19.
    D. Emin andC. Wood, Proceedings 18th Intersociety Energy Conversion Engineering Conference, Florida, August 1983, Vol. 1 (1983) p. 222.Google Scholar
  20. 20.
    Monsanto, BP 1 015 985 (1962–1966); FrP 1 338 927 (1962–1963).Google Scholar
  21. 21.
    G. A. Slack, D. W. Oliver andF. H. Horn,Phys. Rev. B 4 (1971) 1714.Google Scholar
  22. 22.
    D. E. Mahagin, J. L. Bates andD. E. Baker,Rep. HEDL-TME (1973) 73.Google Scholar
  23. 23.
    M. Beauvy,Sci. Ceram. 11 (1981) 385.Google Scholar
  24. 24.
    N. H. Zhuravlev, G. N. Makarenko, G. V. Samsonov, V. S. Sinelnikova andG. G. Tsebuly,Izv. Akad. Nauk. SSSR, Akad. Tekh. Nauk. 1 (1961) 133.Google Scholar
  25. 25.
    M. Bouchacourt andF. Thevenot,J. Less Common Met. 67 (1979) 327.Google Scholar
  26. 26.
    H. J. Becher andF. Thevenot,Z. Anorg. Allgem. Chem. 410 (1974) 274.Google Scholar
  27. 27.
    H. J. Becher, F. Thevenot andC. Brodhag,ibid. 469 (1980) 7.Google Scholar
  28. 28.
    M. Bouchacourt andF. Thevenot,Mater. Res. Bull. 17 (1982) 1353.Google Scholar
  29. 29.
    C. Brodhag, Thèse d'état, Limoges, France (1983).Google Scholar
  30. 30.
    G. H. Reynolds, N. B. Elsner andN. H. Norman, Proceedings 4th International Conference on Thermoelectrical Energy Conversion (1982) p. 43.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1985

Authors and Affiliations

  • Michel Bouchacourt
    • 1
  • Francois Thevenot
    • 1
  1. 1.Equipes “céramiques spéciales et traitements de surface”Ecole Nationale Supérieure des Mines et Centre de Recherches Rhône Alpes de Céramiques spéciales CRRACSSaint-Etienne CédexFrance

Personalised recommendations