Meteorology and Atmospheric Physics

, Volume 35, Issue 3, pp 149–165 | Cite as

Vertical structure of the wind field during the special observing period I of the global weather experiment

  • J. N. Paegle
  • Z. Zhen
  • G. Sampson


The vertical structure of the global atmosphere is analyzed for selected periods of the Special Observing Period I (SOP-I) for the Global Weather Experiment (GWE). The analysis consists of projection of the streamfunction and velocity potential at 200 and 850 mb on spherical harmonics and of the wind and height fields on the normal modes of a linearized form of the primitive equations for a basic state at rest. The kinematic vertical structure is discussed in terms of correlation coefficients of the 200 mb and 850 mb winds and analysis of the internal and external normal modes of the primitive equations. The reliability of the results is checked by applying the same analysis methods to data sets obtained from three different institutions: Geophysical Fluid Dynamics Laboratory (GFDL), European Center for Medium Range Weather Forecasting (ECMWF), and Goddard Laboratory for the Atmospheres (GLA). It is found that, on a global basis, vertically reversing circulations are as important as the equivalent barotropic structures. For the vertically reversing components, the gravity and mixed Rossby-gravity modes have contributions of the same order of magnitude as those of the Rossby modes in tropical latitudes.


Normal Mode Vertical Structure Primitive Equation Medium Range Weather Forecast Height Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Vertikalstruktur des Windfeldes während der ersten intensiven Beobachtungsperiode des “Global Weather Experiment”


Es wird die Vertikalstruktur der Atmosphäre für ausgesuchte Perioden der ersten intensiven Beobachtungsperiode (SOP-I) des “Global Weather Experiment” (GWE) analysiert. Die Analyse besteht in der Projektion der Stromfunktion und des Geschwindigkeitspotentials in 200 und 850 mb auf sphärische harmonische Funktionen und der Wind- und Geopotentialfelder auf die Normalmodi der linearisierten primitiven Gleichungen für einen Ausgangszustand in Ruhe. Die kinematische Vertikalstruktur wird mit Hilfe der Korrelationskoeffizienten des Windes in 200 und 850 mb und der Analyse der internen und externen Normalmodi der primitiven Gleichungen untersucht. Die Zuverlässigkeit der Ergebnisse wird durch Anwendung derselben Analysemethoden auf Datensätze von drei verschiedenen Institutionen überprüft: Geophysical Fluid Dynamics Laboratory (GFDL), Europäisches Zentrum für Mittelfristvorhersagen (ECMWF) und Goddard Laboratory for the Atmosphere (GLA). Es stellt sich heraus, daß auf einer globalen Basis die sich mit der Höhe umkehrenden Zirkulationen genauso wichtig sind, wie die entsprechenden barotropen Strukturen. Zu den sich mit der Höhe umkehrenden Komponenten tragen Schwerkraft- und gemischte Rossby-Schwerkraft-Effekte in der gleichen Größenordnung bei, wie die Rossby-Effekte in den Tropen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arpe K (1985) Comparison of FGGE level III-b analyses by ECMWF and by GFDL for the period 27 February to 7 March, 1979 taking recent improvements of the ECMWF analysis scheme into account. Report of the seminar on progress in diagnostic studies of the global atmospheric circulation as a result of the Global Weather Experiment. GARP Report no. 42-WMO/TD-no. 22-III-38-42Google Scholar
  2. Baker WE (1983) Objective analysis and assimilation of observational data from FGGE. Mon Wea Rev 111: 328–342Google Scholar
  3. Bengtsson L (1980) Current problems in four-dimensional data assimilation. ECMWF Seminar Volume on Data Assimilation Methods, pp 195–218Google Scholar
  4. Bengtsson L, Kanamitsu M, Kallberg P, Uppala S (1982) FGGE four-dimensional data assimilation at ECMWF. Bull Amer Met Soc: 29–43Google Scholar
  5. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97: 163–172Google Scholar
  6. Blackmon ML, Madden RA, Wallace JM, Gutzler DS (1979) Geographical variations in the vertical structure of geopotential height fluctuations. J Atmos Sci 36: 2450–2466Google Scholar
  7. Blackmon ML, White GH (1982) Zonal wave number characteristics of Northern Hemisphere transient eddies. J Atmos Sci 39: 1985–1998Google Scholar
  8. Charney JG (1947) The dynamics of long waves in a baroclinic westerly current. J Met 4: 135–162Google Scholar
  9. Charney JG, Eliassen E (1949) A numerical method for predicting the perturbations of the middle-latitude westerlies. Tellus 1: 38–54Google Scholar
  10. Charney JG, Drazin PG (1961): Propagation of planetary scale disturbances from the lower to the upper atmosphere. J Geophys Res 66: 83–109Google Scholar
  11. Eady ET (1949) Long waves and cyclone waves. Tellus 1: 33–52Google Scholar
  12. Eliassen E, Machenhauer B (1965) A study of the flucturations of the atmospheric planetary flow patterns represented by spherical harmonics. Tellus 17: 220–238Google Scholar
  13. Geisler JE (1981) A linear model of the Walker Circulation. J Atmos Sci 38: 1390–1400Google Scholar
  14. Geisler JE, Blackmon ML, Bates GT, Munoz S (1985) Sensitivity of January climate response to the magnitude and position of equatorial Pacific sea surface temperature anomalies. J Atmos Sci 42: 1037–1049Google Scholar
  15. Hoskins BJ, Karoly DJ (1982) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38: 1179–1196Google Scholar
  16. Kalnay E, Halem M (1981) Large amplitude stationary Rossby waves in the Southern Hemisphere. International conference on early results of FGGE and large-scale aspects of its monsoon experiments. Tallahassee, Florida, WMO-GARP, Report 3, pp 5–15Google Scholar
  17. Kasahara A (1976) Normal modes of ultralong waves in the atmosphere. Mon Wea Rev 104: 669–690Google Scholar
  18. Kasahara A (1980) Effect of zonal flows on the free oscillations of a barotropic atmsophere. J Atmos Sci 37: 917–929Google Scholar
  19. Kasahara A, Puri K (1981) Spectral representation of three-dimensional global data by expansion in normal modes. Mon Wea Rev 109: 37–51Google Scholar
  20. Kao S-K, Wendell LL (1970) The kinetic energy of the large-scale atmsopheric motions in wave number frequency space I. Northern Hemisphere. J Atmos Sci 27: 359–375Google Scholar
  21. Kousky VE, Wallace JM (1971) On the interaction between Kelvin waves and the mean zonal flow. J Atmos Sci 28: 162–169Google Scholar
  22. Krishnamurti TN, Kanamitsu M, Koss WJ, Lee JD (1973) Tropical East-West circulations during the northern winter. J Atmos Sci 30: 780–787Google Scholar
  23. Krishnamurti TN, Ingles K, Locke S, Kituda T, Pasch R (1983) Details of low latitude medium range numerical weather prediction using a global spectral model-II. Effects of orography and physical initialization. Florida State University (FSU) Report II 83-11. Available on request from FSUGoogle Scholar
  24. Kuo HL (1952) Three-dimensional disturbances in a baroclinic zonal current. J Met 9: 260–278Google Scholar
  25. Lindzen RS, Straus DM, Katz B (1984) An observational study of large-scale atmospheric Rossby waves during FGGE. J Atmos Sci 41: 1320–1335Google Scholar
  26. Lorenz EN (1972) Barotropic instability of Rossby wave motion. J Atmos Sci 29: 258–264Google Scholar
  27. Machenhauer B (1977) On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization. Contr Atmos Sci 50: 253–271Google Scholar
  28. Miyakoda K, Ploshay J, Stern W (1983) Guide and caution on the GFDL/FGGE III-b data set. GWE Newsletter no 1, May 8–14Google Scholar
  29. Murakami T, Unninayar MS (1977) Atmospheric circulation during December 1970 through February 1971. Mon Wea Rev 105: 1024–1038Google Scholar
  30. Paegle J (1978) The transient mass-flow adjustment of heated atmospheric circulations. J Atmos Sci 35: 1678–1688Google Scholar
  31. Paegle JN, Paegle J (1976) On the frequency spectra of atmospheric motions in the vicinity of a mountain barrier. J Atmos Sci 33: 499–506Google Scholar
  32. Paegle J, Tomlinson EM (1975) Solutions of the balance equations by Fourier transform and Gauss elimination. Mon Wea Rev 103: 528–535Google Scholar
  33. Paegle J, Paegle JN, Lewis EP, McGlasson A (1979) Description and interpretation of planetary flow structure of the winter 1976 DST data. Mon Wea Rev 107: 1506–1014Google Scholar
  34. Paegle J, Baker W (1982a) Planetary-scale characteristics of the atmospheric circulation during January and February 1979. J Atmos Sci 39: 2521–2538Google Scholar
  35. Paegle J, Baker W (1982b) Global scale weekly and monthly energetics during January and February 1979. J Atmos Sci 39: 2750–2759Google Scholar
  36. Paegle J, Paegle JN, Hong Yan (1983) The role of barotropic oscillations within atmospheres of highly variable refractive index. J Atmos Sci 40: 2251–2265Google Scholar
  37. Paegle J, Baker WE, Paegle JN (1986) The analysis sensitivity to tropical winds from the Global Weather Experiment. Mon Wea Rev, in pressGoogle Scholar
  38. Phillips NA (1954) Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level quasi-geostrophic model. Tellus 6: 273–286Google Scholar
  39. Phillips NA (1963) Geostrophic motions. Rev Geophys 6: 123–176Google Scholar
  40. Ramage CS (1968) Role of tropical “maritime continent” in the atmospheric circulation. Mon Wea Rev 96: 365–370Google Scholar
  41. Rossby CG (1939) Relations between variations in the intensity of the zonal circulation of the atmosphere and displacements of the semi-permanent centers of action. J Mar Res 2: 39–55Google Scholar
  42. Saltzmann B, Peixoto JP (1957) Harmonic analysis of the mean Northern Hemisphere wind field for the year 1950. Quart J R Met Soc 83: 360–364Google Scholar
  43. Sampson G (1982) Selected analyses of FGGE SOP-I data. Master's thesis, University of Utah. Available from the University of Utah on requestGoogle Scholar
  44. Silva-Dias PL, Bonatti JP (1985) A preliminary study of the observed model structure of the summer circulation over Tropical South America. Tellus 37A: 185–195Google Scholar
  45. Simmonds I (1976) Data assimilation with a one-level primitive equation spectral model. J Atmos Sci 33: 155–1171Google Scholar
  46. Simmonds I (1978) The application of a multi-level spectral model to data assimilation. J Atmos Sci 35: 1321–1339Google Scholar
  47. Simmons AJ (1982) The forcing of stationary wave motion by tropical diabatic heating. Quart J R Met Soc 108: 503–534Google Scholar
  48. Simmons AJ, Wallace JM, Branstator GW (1983) Barotropic wave propagation and instability; and atmospheric teleconnection patterns. J Atmos Sci 40: 1363–1392Google Scholar
  49. Thompson PD (1961) Numerical weather analysis and prediction. McMillan, New YorkGoogle Scholar
  50. Van Loon H, Jenne RL (1982) The zonal harmonic standing waves in the Southern Hemisphere. J Geophys Res 77: 992–1003Google Scholar
  51. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109: 784–812Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. N. Paegle
    • 1
  • Z. Zhen
    • 2
  • G. Sampson
    • 3
  1. 1.Department of MeteorologyUniversity of UtahSalt Lake CityUSA
  2. 2.Academy of Meteorological ScienceCentral Meteorological BureauPekingPeople's Republic of China
  3. 3.National Weather ServiceSalt Lake CityUSA

Personalised recommendations