Journal of Protein Chemistry

, Volume 12, Issue 2, pp 143–152 | Cite as

Application of three-dimensional molecular hydrophobicity potential to the analysis of spatial organization of membrane domains in proteins. III. Modeling of intramembrane moiety of Na+, K+-ATPase

  • Roman G. Efremov
  • Dmitry I. Gulyaev
  • Nikolai N. Modyanov
Article

Abstract

The most probable interlocation of transmembrane α-helices of Na+, K+-ATPase has been calculated by a computer-aided molecular simulation approach in the framework of models with eight and 10 helical peptides for the α-subunit. The method is based on the concept of three-dimensional molecular hydrophobicity potential (MHP) and provides valuable description of spatial hydrophobic properties of membrane-spanning segments as well as helix-helix packing interactions inside the membrane. Resulting model of the arrangement of intramembrane domain agrees with recent results on hydrophobic photolabeling of an intramembrane part of the β-subunit and the sixth transmembrane segment of the α-subunit. It is also consistent with current ideas on hydrophobic organization of integral membrane proteins. Possible topology of a cation-binding site is discussed.

Key words

Na+, K+-ATPase intramembrane domain hydrophobic interaction molecular hydrophobocity potential protein spatial organization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. C. (1987).Proc. Natl. Acad. Sci. USA 84, 5730–5734.Google Scholar
  2. Arystarkhova, E. N., Gasparian, M., Modyanov, N. N., and Sweadner, K. J. (1992).J. Biol. Chem. 267, 13,694–13,701.Google Scholar
  3. Broude, N. E., Modyanov, N. N., Monastyrskaya, G. S., and Sverdlov, E. D. (1989).FEBS Lett. 257, 1–9.Google Scholar
  4. Canessa, C. M., Horisberger, J.-D., Louvard, D., and Rossier, B. C. (1992).EMBO J. 11, 1681–1687.Google Scholar
  5. Chou, K.-C., Carlacci, L., Maggiora, G. M., Parodi, L. A., and Schulz, M. W. (1992).Protein Science 1, 810–827.Google Scholar
  6. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1985).Nature 318, 618–624.Google Scholar
  7. Edholm, O., and Jahnig, F. (1988).Biophys. Chem. 30, 279–292.Google Scholar
  8. Efremov, R. G., Gulyaev, D. I., Vergoten, G., and Modyanov, N. N. (1992a).J. Protein Chem. 11, 665–675.Google Scholar
  9. Efremov, R. G., Gulyaev, D. I., and Modyanov, N. N. (1992b).J. Protein Chem. 11, 699–708.Google Scholar
  10. Findlay, J., and Eliopoulos, E. (1990).Trends Biochem. Sci. 11, 492–499.Google Scholar
  11. Forbush, B. (1983). InCurrent Topics in Membranes and Transport (Bronner, F., and Kleinzeller, A., eds.), Vol. 19, Academic Press, New York, pp. 185–189.Google Scholar
  12. Furet, P., Sele, A., and Cohen, N. C. (1988).J. Mol. Graphics 6, 182–189.Google Scholar
  13. Goldshleger, R., Tal, D. M., Moorman, J., Stein, W. D., and Karlish, S. J. D. (1992).Proc. Nat. Acad. Sci. (in press).Google Scholar
  14. Green, N. M., and MacLennan, D. H. (1989).Biochem. Soc. Trans. 17, 819–822.Google Scholar
  15. Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckman, E., and Downing, K. H. (1990).J. Mol. Biol. 213, 899–929.Google Scholar
  16. Jahnig, F., and Edholm, O. (1990).Z. Phys. B 78, 137–143.Google Scholar
  17. Kano, I., Satoh, K., Nagai, F., Ushiyama, K., Nakao, T., Hara, Y., and Kano, K. (1990).Biochem. Cell Biol. 68, 1262–1267.Google Scholar
  18. Karlish, S. J. D., Goldshleger, R., Tal, D. M., and Stein W. D. (1991). InThe Sodium Pump: Structure, Mechanism, and Regulation (Kaplan, J. H., and De Weer, P., eds.), Rockefeller Univ. Press, New York, pp. 129–141.Google Scholar
  19. Modyanov, N. N., Vladimirova, N. M., Gulyaev, D. I., and Efremov, R. G. (1992).Ann. New York Acad. Sci. (in press).Google Scholar
  20. Modyanov, N. N., Lutsenko, S. V., Chertova, E. N., and Efremov, R. G. (1991). InThe Sodium Pump: Structure, Mechanism, and Regulation (Kaplan, J. H., and De Weer, P., eds.), Rockefeller Univ. Press, New York, pp. 99–115.Google Scholar
  21. Munson, K. B., Gutierrez, C., Balaji, V. N., Ramnarayan, K., and Sachs, G. (1991).J. Biol. Chem. 266, 18,976–18,988.Google Scholar
  22. Ovchinnikov, Yu. A., Demin, V. V., Barnakov, A. N., Kuzin, A. P., Lunev, A. V., Modyanov, N. N., and Dzhandzhugazyan, K. N. (1985).FEBS Lett. 190, 73–76.Google Scholar
  23. Ovchinnikov, Yu. A., Arystarkhova, E. A., Arzamazova, N. M., Dzhandzhugazyan, K. N., Efremov, R. G., Nabiev, I. R., and Modyanov, N. N. (1988).FEBS Lett. 227, 235–239.Google Scholar
  24. Rees, D. C., Komiya, H., Yeates, T. O., Allen, J. P., and Feher, G. (1989a).Ann. Rev. Biochem. 58, 607–633.Google Scholar
  25. Rees, D. C., De Antonio, L., and Eisenberg, D. (1989b).Science 245, 510–513.Google Scholar
  26. Shinoguchi, F., Ito, E., Kudo, A., Nakamura, S., and Taniguchi, K. (1991). InThe Sodium Pump: Structure, Mechanism, and Regulation (Kaplan, J. H., and De Weer, P., eds.), Rockefeller Univ. Press, New York, pp. 363–367.Google Scholar
  27. von Heijne, G., and Manoil, C. (1990).Protein Engng. 4, 109–112.Google Scholar
  28. Wang, J., and Pullman, A. (1991).Biochim. Biophys. Acta 1070, 493–496.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Roman G. Efremov
    • 1
  • Dmitry I. Gulyaev
    • 1
  • Nikolai N. Modyanov
    • 1
  1. 1.Shemyakin Institute of Bioorganic ChemistryRussian Academy of SciencesMoscow V-437Russia

Personalised recommendations