Journal of Statistical Physics

, Volume 59, Issue 3–4, pp 845–867 | Cite as

Global existence in L1 for the Enskog equation and convergence of the solutions to solutions of the Boltzmann equation

  • Leif Arkeryd
  • Carlo Cercignani


For the Enskog equation in a box an existence theorem is proved for initial data with finite mass, energy, and entropy. Then, by letting the diameter of the molecules go to zero, the weak convergence of solutions of the Enskog equation to solutions of the Boltzmann equation is proved.

Key words

Boltzmann equation Enskog equation kinetic theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. DiPerna and P. L. Lions, On the Cauchy problem for Boltzmann equations,Ann. Math. 130:321–366 (1989).Google Scholar
  2. 2.
    L. Arkeryd, Loeb solutions of the Boltzmann equation,Arch. Rat. Mech. Anal. 86:85–97 (1984).Google Scholar
  3. 3.
    C. Cercignani, Existence of global solutions for the space inhomogeneous Enskog equation,Transport Theory Stat. Phys. 16:213–221 (1987).Google Scholar
  4. 4.
    L. Arkeryd, On the Enskog equation in two space variables,Transport Theory Stat. Phys. 15:673–691 (1986).Google Scholar
  5. 5.
    C. Cercignani, Small data existence for the Enskog equation inL 1,J. Stat. Phys. 51:291–297 (1988).Google Scholar
  6. 6.
    L. Arkeryd, On the Enskog equation with large initial data,SIAM J. Math. Anal. (1989).Google Scholar
  7. 7.
    L. Arkeryd and C. Cercignani, On the convergence of solutions of the Enskog equation to solutions of the Boltzmann equation,Comm. PDE 14:1071–1090 (1989).Google Scholar
  8. 8.
    J. Polewczak, Global existence inL 1 for the modified nonlinear Enskog equation inR 3,J. Stat. Phys. 56:159 (1988).Google Scholar
  9. 9.
    N. Bellomo and M. Lachowitz, On the asymptotic equivalence between the Enskog and the Boltzmann equations,J. Stat. Phys. 51:233–247 (1988).Google Scholar
  10. 10.
    P. Résibois,H-theorem for the (modified) nonlinear Enskog equation,J. Stat. Phys. 19:593–609 (1978).Google Scholar
  11. 11.
    C. Cercignani and M. Lampis, On the kinetic theory of a dense gas of rough spheres,J. Stat. Phys. 53:655–672 (1988).Google Scholar
  12. 12.
    C. Cercignani, The Grad limit for a system of soft spheres,Commun. Pure Appl. Math. 36:479–494(1983).Google Scholar
  13. 13.
    F. Golse, B. Perthame, and R. Sentis, Un résultat de compacité pour les équations de transport et application au calcul de la valeur propre principale d'un opérateur de transport,C. R. Acad. Sci. Paris 301:341–344 (1985).Google Scholar
  14. 14.
    F. Golse, P. L. Lions, B. Perthame, and R. Sentis, Regularity of the moments of the solution of a transport equation,J. Fund. Anal. 76:110–125 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Leif Arkeryd
    • 1
  • Carlo Cercignani
    • 2
  1. 1.Department of Mathematics, Chalmers Institute of TechnologyUniversity of GöteborgGöteborgSweden
  2. 2.Department of MathematicsPolitecnico di MilanoMilanItaly

Personalised recommendations