Journal of Statistical Physics

, Volume 59, Issue 3–4, pp 827–843 | Cite as

The nearest neighbor gradient system. A rigorous model for a version of the minimal entropy production principle

  • Michael G. Mürmann


We prove that a version of the minimal entropy production principle holds rigorously for the nearest neighbor gradient system, whose hydrodynamic behavior we treated in an earlier paper, and study its relation to the macroscopic mass current and local equilibrium of higher order.

Key words

Minimal entropy production nearest neighbor gradient system macroscopic mass current nonlinear diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. T. Jaynes, The minimum entropy production principle, inAnnual Review of Physical Chemistry, S. Rabinovitch, ed. (Annual Reviews, Palo Alto, California, 1980).Google Scholar
  2. 2.
    H. Spohn, Large scale dynamics of interacting particles, Preprint (1989).Google Scholar
  3. 3.
    M. G. Mürmann, The hydrodynamic limit of a one-dimensional nearest neighbor gradient system,J. Stat. Phys. 48:769–788 (1987).Google Scholar
  4. 4.
    M. Z. Guo, G. C. Papanicolaou, and S. R. S. Varadhan, Nonlinear diffusion limit for a system with nearest interactions,Commun. Math. Phys. 118:31–59 (1988).Google Scholar
  5. 5.
    R. Lang, On the asymptotic behaviour of infinite gradient systems,Commun. Math. Phys. 65:129–149 (1979).Google Scholar
  6. 6.
    P. Billingsley,Probability and Measure, 2nd ed. (Wiley, New York, 1986).Google Scholar
  7. 7.
    H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations,Math. Z. 183:311–341 (1983).Google Scholar
  8. 8.
    A. S. Kalashnikov, On the differential properties of generalized solutions of equations of the nonsteady-state filtration type,Vestnik Moskov Univ. Ser. I Math. Mekh. 29:62–68 (transi. 48–53) (1974).Google Scholar
  9. 9.
    J. L. Vazquez, Behaviour of the velocity of one-dimensional flows in porous media,Trans. Am. Math. Soc. 286:787–802 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Michael G. Mürmann
    • 1
  1. 1.Institut für Angewandte MathematikUniversität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations