Skip to main content
Log in

A new method for the direct calculation of resonance parameters with application to the quasibound states of the H2X1Σ +g system

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

A new method for the direct calculation of resonance parameters is presented. It is based upon searching for poles of the scattering matrix at complex energies. This search is expedited by the use of analytic derivatives of the scattering matrix with respect to the total energy. This procedure is applied initially to a single channel problem, but is generalizable to more complicated systems. Using the most accurate available potential energy data, we calculate resonance parameters for all of the physically important quasibound states of the ground electronic state of the hydrogen molecule. Corrections to the Born-Oppenheimer potential are included and assessed. The new method has no difficulty locating resonances with widths greater than about 1×10−7 cm−1. It is easier to find narrow resonances by monitoring the dependence of the imaginary part of the reactance matrix on the real part of a complex energy than to monitor the dependence of the eigenphase sum on energy at real energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simons J (1984). In: Truhlar DG (ed) Resonances. American Chemical Society, Washington, pp 3–16

    Google Scholar 

  2. Roberts RE, Bernstein RB, Curtiss CF (1969) J Chem Phys 50:5163–5176

    Google Scholar 

  3. Taylor JR (1983) Scattering theory. Krieger, Malabar, Fla

    Google Scholar 

  4. Ashton CJ, Child MS, Hutson JM (1983) J Chem Phys 78:4025–4039

    Google Scholar 

  5. Hayes EF, Walker RB (1984). In: Truhlar DG (ed) Resonances. American Chemical Society, Washington, pp 493–513

    Google Scholar 

  6. Bartschat K, Burke PG (1986) Computer Phys Commun 41:75–84

    Google Scholar 

  7. Schwenke DW, Truhlar DG (1987) J Chem Phys 87:1095–1106

    Google Scholar 

  8. LeRoy RJ, Liu W-K (1978) J Chem Phys 69:3622–3631

    Google Scholar 

  9. Basilevsky MV, Ryaboy VM (1981) Int J Quantum Chem 19:611–635; (1984) Chem Phys 86:67–83; (1987) J Comp Chem 8:683–699

    Google Scholar 

  10. Watson DK (1984) Phys Rev A 29:558–561; (1986) 34:1016–1025; (1986) J Phys B 19:293–299

    Google Scholar 

  11. Waech TG, Bernstein RB (1967) J Chem Phys 46:4905–4911

    Google Scholar 

  12. LeRoy RJ, Bernstein RB (1971) J Chem Phys 54:5114–5126

    Google Scholar 

  13. LeRoy RJ (1971) J Chem Phys 54:5433–5434

    Google Scholar 

  14. Schwartz C, LeRoy RJ (1987) J Mol Spect 121:420–439

    Google Scholar 

  15. Wolniewicz L (1983) J Chem Phys 78:6173–6181

    Google Scholar 

  16. Kołos W, Szalewicz K, Monkhorst HJ (1986) J Chem Phys 84:3278–3283

    Google Scholar 

  17. Weidenmüller HA (1964) Ann Phys 28:60–115; (1964) 29:378–382

    Google Scholar 

  18. Hazi A (1979) Phys Rev A 19:920–922

    Google Scholar 

  19. Press WH, Flannery BP, Teukolsky SA, Vetterlin WT (1986) Numerical recipes. Cambridge University Press, Cambridge

    Google Scholar 

  20. Light JC, Walker RB (1976) J Chem Phys 65:4272–4282; Stechel EB, Walker RB, Light JC (1978) J Chem Phys 69:3518–3531

    Google Scholar 

  21. Dickinson AS (1974) Mol Phys 28:1085–1089

    Google Scholar 

  22. Rush DG (1968) Trans Faraday Soc 64:2013–2016

    Google Scholar 

  23. Truhlar DG (1972) Chem Phys Let 15:483–485

    Google Scholar 

  24. Truhlar DG (1974) Chem Phys Let 26:377–380

    Google Scholar 

  25. Ford KW, Hill DL, Wakano M, Wheeler JA (1959) Ann Phys 7:239–258

    Google Scholar 

  26. Newton RG (1982) Scattering theory of waves and particles, 2nd edn. Springer, New York Heidelberg Berlin

    Google Scholar 

  27. Anderson RW (1982) J Chem Phys 77:4431–4440

    Google Scholar 

  28. Kołos W, Wolniewicz L (1965) J Chem Phys 43:2429–2441

    Google Scholar 

  29. LeRoy RJ, Bernstein RB (1968) J Chem Phys 49:4312–4321

    Google Scholar 

  30. Kołos W, Wolniewicz L (1964) J Chem Phys 41:3663–3673

    Google Scholar 

  31. Bishop DM, Shih S-K (1986) J Chem Phys 64:162–169

    Google Scholar 

  32. Menzinger M (1971) Chem Phys Let 10:507–509

    Google Scholar 

  33. Walkauskas LP, Kaufman F (1976) J Chem Phys 64:3885–3886

    Google Scholar 

  34. Stwalley WC (1970) Chem Phys Let 6:241–244

    Google Scholar 

  35. Dabrowski I (1984) Can J Phys 62:1639–1664

    Google Scholar 

  36. Guzman R, Rabitz H (1987) J Chem Phys 86:1387–1394

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwenke, D.W. A new method for the direct calculation of resonance parameters with application to the quasibound states of the H2X1Σ +g system. Theoret. Chim. Acta 74, 381–402 (1988). https://doi.org/10.1007/BF01025840

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025840

Key words

Navigation