Skip to main content
Log in

Dependence of the simulated seeding effects of Cb cloud on the types of the AgI agents

  • Published:
Meteorology and Atmospheric Physics Aims and scope Submit manuscript

Summary

A one-dimensional kinematic model is used to investigate the effects of silver iodide seeding in the region of a Cb cloud between isotherms of −8°C and −12°C. The agent interaction with cloud atmosphere is simulated by an improved microphysical model version which includes phoretic processes. The behaviour of the different agent types is investigated using the maximum values of agent mixing ratios and corresponding agent particle masses and radii.

It is shown that the agent residence time in the seeding zone significantly depends on vertical velocity. The residence time is comparable to that previously reported. On the other side, the final graupel production decreases slightly when vertical velocity increases, while the corresponding graupel production is quite different for agents used. The main agent nucleation mechanisms are the Brownian coagulation of cloud droplets, inertial impact of cloud droplets and deposition nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkezweeny, A. J., 1971: A contact nucleation model for seeded clouds.J. Appl. Meteor.,10, 732–738.

    Google Scholar 

  • Baker, B. A., 1991: On the role of phoresis in cloud ice initiation.J. Atmos. Sci.,48, 1545–1548.

    Google Scholar 

  • Cooper, W. A., 1974: A possible mechanism for contact nucleation.J. Atmos. Sci.,31, 1832–1837.

    Google Scholar 

  • Cotton, W. R., Stephens, M. A., Nehrkorn, T., Tripoli, G. J., 1982: The Colorado State University three-dimensional cloud/mesoscale model-1982. Part II: An ice phase parameterization.J. Rech. Atmos.,16, 295–320.

    Google Scholar 

  • Cotton, W. R., Tripoli, G. J., Rauber, R. M., Mulvhill, E. A., 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall.J. Climate Appl. Meteor.,114, 718–733.

    Google Scholar 

  • Ćurić, M., Janc, D., 1990: Numerical study of the cloud seeding effects.Meteorol. Atmos. Phys. 42, 145–164.

    Google Scholar 

  • Federer, B., Waldvogel, A., 1975: Hail and raindrop size distributions from a Swiss multicell storm.J. Appl. Meteor.,14, 91–97.

    Google Scholar 

  • Fukuta, N., 1980:Advances in Cloud Physics. (Textbook). University of Utah, 220 pp.

  • Hsie, E.-Y., Farley, R. D., Orville, H. D., 1980: Numerical simulation of ice-phase convective cloud seeding.J. Appl. Meteor.,19, 950–977.

    Google Scholar 

  • Huter, M., Prelesnik, B., Ćurić, M., Mitić D., Herak, R., 1988: X-ray diffraction analysis of aerosols obtained by burning of the AgI based pyrotechnics. In: Wagner, P. E., Vali, G. (eds.),Atmospheric Aerosols and Nucleation. Berlin, Heidelberg: Springer, pp. 670–673 (Lecture Notes in Physics, 309).

    Google Scholar 

  • Kopp, F. J., 1988: A simulation of Alberta cumulus.J. Appl. Meteor.,27, 626–641.

    Google Scholar 

  • Lin, Y.-L., Farley, R. D., Orville, H. D., 1983: Bulk parameterization of the snow field in a cloud model.J. Climate Appl. Meteor.,22, 1065–1092.

    Google Scholar 

  • Mesinger, F., Mesinger, N., 1993: Has hail suppression in Eastern Yugoslavia led to a reduction in the frequency of hail?J. Appl. Meteor. (in press).

  • Orville, H. D., Chen, J.-M., 1982: Effects of cloud seeding, latent heat of fusion, and condensate loading on cloud dynamics and precipitation evolution: A numerical study.J. Atmos. Sci. 39, 2807–2827.

    Google Scholar 

  • Orville, H. D., Farley, R. D., Hirsch, J. H., 1984: Some surprising results from simulated seeding of stratiform-type clouds.J. Climate Appl. Meteor.,12, 517–521.

    Google Scholar 

  • Parungo, F. P., 1973: Electron-microscopic study of silver iodide as contact or sublimation nuclei.J. Appl. Meteor.,12, 517–521.

    Google Scholar 

  • Radinović, Dj., 1989: Effectiveness of hail control in Serbia.J. Wea. Mod.,21, 75–84.

    Google Scholar 

  • Slinn, W. G. N., 1971: Time constants for cloud seeding and tracer experiments.J. Atmos. Sci. 27, 299–307.

    Google Scholar 

  • Srivastava, R. C., 1967: A study of the effect of precipitation on cumulus dynamics.J. Atmos. Sci.,24, 36–45.

    Google Scholar 

  • Sulackvelidze, G. K., 1967:Showers and Hail. (In Russian). Leningrad: Gidrometizdat, 412 pp.

    Google Scholar 

  • Young, K. C., 1974a: The role of contact nucleation in icephase initiation in clouds.J. Atmos. Sci.,31, 768–776.

    Google Scholar 

  • Young, K. C., 1974b: A numerical simulation of wintertime, orographic precipitation: Part I: Description of model microphysics and numerical techniques.J. Atmos. Sci.,31, 1735–1748.

    Google Scholar 

  • Young, K. C., 1974c: A numerical simulation of wintertime, orographic precipitation: Part II: Comparison of natural and AgI-seeded conditions.J. Atmos. Sci.,31, 1749–1767.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ćurić, M., Janc, D. Dependence of the simulated seeding effects of Cb cloud on the types of the AgI agents. Meteorl. Atmos. Phys. 52, 91–100 (1993). https://doi.org/10.1007/BF01025755

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025755

Keywords

Navigation