Meteorology and Atmospheric Physics

, Volume 47, Issue 2–4, pp 165–175 | Cite as

Linear retrieval and global measurement of precipitable water from the SEASAT SMMR data

  • P. C. Pandey


The Seasat Scanning Multichannel Microwave Radiometer (SMMR) measurements in the 18.0, 21.0 and 37.0 GHz channels, both horizontal and vertical polarizations, are primarily used for precipitable water, cloud liquid water content and rainfall rate determination. Linear regressions using a leaps and bounds procedure are used for the retrieval of precipitable water. The radiation simulated for all the ten SMMR channels with varied global environmental parameters were used for subset selection for water vapour retrieval. Only subsets with channels having uniform grid size (18, 21 and 37 GHz) were used for the analysis. A total of eight subsets using two to five frequencies of the SMMR are examined to determine their potential in the retrieval of atmospheric water vapour content. Our analysis indicates that the information concerning the 18 and 21 GHz channels are optimum for the water vapour retrieval. An attempt to use all the SMMR channels simultaneously gives no significant improvement. A comparison with the radiosonde observations gave an rms accuracy of 0.4 g/cm2. The rms accuracy of retrieved precipitable water using different subsets was within 10 percent.

Global maps of precipitable water over oceans using two and five channels retrieval are given. These maps are generated on a 10 day average basis as well as on monthly basis for the period 7 July to 6 August 1978. An analysis of these Global maps reveals the possibility of global moisture distribution associated with oceanic currents and large scale general circulation in the atmosphere. A stable feature of the large scale circulation is noticed. The precipitable water is maximum over the Bay of Bengal and in the North Pacific over the Kuroshio current and shows general latitudinal pattern.


Precipitable Water Water Vapour Content Liquid Water Content Kuroshio Current Atmospheric Water Vapour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alishouse, J., 1983: Total precipitable water and rainfall determination from the Seasat Scanning Multichannel Microwave Radiometer (SMMR).J. Geophys. Res.,88 (C3), 1929–1935.Google Scholar
  2. Furnival, G. M., Wilson, R. W., Jr., 1974: Regressions by leaps and bounds.Technometrics,16, 499–511.Google Scholar
  3. Goodberlet, M. A., Swift, C. T., Wilkerson, J. C., 1989: Remote sensing of ocean surface winds with the Special Sensor Microwave/Imager,J. Geophys. Res.,94 (C10), 14,547–14,555.Google Scholar
  4. Grody, N. C., 1976: Remote sensing of atmospheric water content from satellites using microwave radiometry.IEEE Trans. Antennas Propagat.,AP-24, 155–162.Google Scholar
  5. Grody, N. C., Gruber, A., Shen, W. C., 1980: Atmospheric water content over the tropical pacific derived from the Nimbus 6 scanning microwave spectrometer.J. Appl. Meteor.,19, 986–996.Google Scholar
  6. Hofer, R., Njoku, E. G., 1981: Regression techniques for oceanographic parameter retrieval using spaceborne microwave radiometry.IEEE Geoscience and Remote Sensing,GE-19, 178–179.Google Scholar
  7. Haydu, K. J., Krishnamurti, T. N., 1981: Moisture analysis from radiosonde and microwave spectrometer data.J. Appl. Meteor.,20, 1177–1191.Google Scholar
  8. Hollinger, J. P., Lo, R., Poe, G., Savage, R., Peirce, J., 1987:Special Sensor Microwave/Imager (SSM/I) User's Guide. Naval Research Laboratory, Washington D.C. 20375, U.S.A.Google Scholar
  9. Krishnamurti, T. N., Kanamitsu, M., 1973: A study of a coasting easterly wave.Tellus. 25, 568–586.Google Scholar
  10. Mitnik, L. M., 1971: Measurement of water vapour conteht over the oceans by SHF radiometers abroad Cosmos-243.Advances in Satellite Meteorology. New York, USA: Wiley & Sons.Google Scholar
  11. Njoku, E. G. 1982: Passive microwave remote sensing of the Earth from space—A Review.Proc. IEEE,70, 728–750.Google Scholar
  12. Pandey, P. C., Kakar, R. K., 1983: A two step linear statistical technique using leaps and bounds procedure for retrieving geophysical parameters from microwave radiometer data.IEEE Trans. Geoscience and Remote Sensing.GE-21 (2), 208–214.Google Scholar
  13. Pandey, P. C., Kakar, R. K., 1982: An empirical microwave emissivity model for a foam covered sea.IEEE J. Oceanic Engg.,OE-7, 135–140.Google Scholar
  14. Pandey, P. C., Sharma, A. K., Gohil, B. S., 1981: A simulation technique for the determination of atmospheric water content with Bhaskara Satellite Microwave Radiometer (SAMIR).Proc. Ind. Acad. Science (Earth Planet. Science) 90, 105–110.Google Scholar
  15. Pandey, P. C., Gohil, B. S., Hariharan, T. A., 1984: A two frequency logarithmic differential technique for retrieving precipitable water from Satellite Microwave Radiometer (SAMIR-II) onboard Bhaskara-II.IEEE Trans. Geoscience and Remote Sensing,GE-22, 547–655.Google Scholar
  16. Pandey, P. C., Kniffen, S., 1991: Linear retrieval, validation and mapping of the sea surface temperature over mid latitude North Pacific Seasat SMMR data.Int. J. Remote Sensing (in press).Google Scholar
  17. Prabhakara, C., Chang, H. D., Chang, A. T. C., 1982: Remote sensing of precipitable water over the oceans from Nimbus 7 microwave measurements.J. Appl. Meteor.,21, 59–68.Google Scholar
  18. Rosenkranz, P. W., 1978: Inversion of data from diffraction limited multiwavelength remote sensors, 1. linear case.Radio Sci.,13, 1003–1010.Google Scholar
  19. Lipes, R. G., Born, G. H., (eds.) 1981: SMMR Mini-workshop IV, JPL Report No. 622-234, Jet Propulson Laboratory, California Institutes of technology, 4800 Oak Grove Drive, Pasadena, California, 91109, USA.Google Scholar
  20. Ruprecht, E., Gray, W. M., 1976: Analysis of satellite observed tropical cloud clustures, II. Thermal, moisture and precipitation.Tellus,23, 414–425.Google Scholar
  21. Schluessel, P., Emery, W. J., 1990: Atmospheric water vapour over oceans from SSM/I measurements.Int. J. Remote Sensing. 11, 753–766.Google Scholar
  22. Staelin, D. H., Kunzi, K. F., Pettyjohn, R. L., Poon, R. K. L., Wilcox, R. W., Waters, J. W., 1976. Remote sensing atmospheric of water vapour and liquid water with the Nimbus 5 microwave spectrometer.J. Appl. Meteor.,15, 1210–1214.Google Scholar
  23. Tabata, S., 1975: The general circulation of the Pacific ocean and a brief account of the oceanographic structure of the north pacific ocean, part-I. Circulation and Volume transport.Atmosphere,13, 135–168.Google Scholar
  24. Tuller, S. E., 1968: World distribution of mean monthly and annual precipitable water.Mon. Wea. Rev.,96, 785–797.Google Scholar
  25. Waters, J. W., Kunzi, K. F., Pettyjohn, R. L., Poon, R. K. L., Stalein, D. H., 1975: Remote sensing of atmospheric temperature profile with Nimbus 5 microwave spectrometer.J. Atmos. Sci.,32, 1953–1969.Google Scholar
  26. Wilheit, T. T., 1990. An algorithm for retrieving water vapour profiles in clear and cloudy atmospheres from 183 GHz radiometric measurements. Simulation studies.J. Appl. Meteor.,29, 508–515.Google Scholar
  27. Wilheit, T. T., Chang, A. T. C., 1980: An Algorithm for retrieval ocean surface and atmospheric parameters from the observations of the Scanning Multichannel Microwave Radiometer.Radio Sci.,15, 525–544.Google Scholar
  28. Wentz, F. J., 1983. Model function for ocean microwave brightness temperature.J. Geophys. Res.,88 (C3), 1892–1908.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • P. C. Pandey
    • 1
  1. 1.Meteorology & Oceanography DivisionSpace Applications CentreAhmeda-badIndia

Personalised recommendations