Skip to main content
  • Special Issue: The Fifth Symposium Of The Federation Of Asian And Oceanian Biochemists. “Enzyme Mechanisms” (Part III)
  • Published:

The hemolymph coagulation system in invertebrate animals

Abstract

A hemocyte lysate from horseshoe crab produced a gel, when exposed to Gram-negative bacterial endotoxins. This gelation reaction of the lysate, so-called Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. Recent biochemical studies on the principle of Limulus test indicate that the hemocytes contain several serine protease zymogens, which constitute a coagulation cascade triggered by endotoxins, and that there is a (1 → 3)-β-d-glucan-mediated coagulation pathway which also results in the formation of gel. Up to now, six protein components, designated coagulogen, proclotting enzyme, factor B, factor C, factor G and anti-LPS factor, all of which are closely associated with the endotoxin-mediated coagulation pathway, have been purified and biochemically characterized. Among these components, the complete amino acid sequences of coagulogens isolated from one American and three Asian species of horseshoe crabs have been established. Moreover, the reconstitution experiment using the isolated clotting factors, C, B, proclotting enzyme and coagulogen in the presence of endotoxin, leads to the formation of coagulin get. Based on these results, we propose here a mechanism for the Limulus coagulation cascade.

This is a preview of subscription content, access via your institution.

References

  1. Aketagawa, J., Miyata, T., Ohtsubo, S., Nakamura, T., Morita, T., Hayashi, H., Miyata, T., Iwanaga, S., Takao, T., and Shimonishi, Y. (1986).J. Biol. Chem. 261, 7357–7365.

    Google Scholar 

  2. Dumont, J. N., Anderson, E., and Winner, G. (1966).J. morphol. 119, 181–208.

    Google Scholar 

  3. Fries, C. R. (1984). InComparative Pathology, Vol. 6 (Cheng, T. C., ed.), Plenum Press, New York, pp. 49–109.

    Google Scholar 

  4. Harada-Suzuki, T., Morita, T., Iwanaga, S., Nakamura, S., and Niwa, M. (1982).J. Biochem. 92, 793–800.

    Google Scholar 

  5. Levin, J., and Bang, F. B. (1964).Bull. Johns Hopkins Hosp. 115, 265–274.

    Google Scholar 

  6. Miyata, T., Usui, K., and Iwanaga, S. (1984a).J. Biochem. 95, 1793–1801.

    Google Scholar 

  7. Miyata, T., Hiranaga, M., Umezu, M., and Iwanaga, S. (1984b).J. Biol. Chem. 259, 8924–8933.

    Google Scholar 

  8. Miyata, T., Matsumoto, H., Hattori, M., Sakaki, Y., and Iwanaga, S. (1986).J. Biochem.,100, 213–220.

    Google Scholar 

  9. Morita, T., Tanaka, S., Nakamura, T., and Iwanaga, S. (1981).FEBS Lett. 129, 318–321.

    Google Scholar 

  10. Morita, T., Ohtubo, S., Nakamura, T., Tanaka, S., Iwanaga, S., Ohashi, K., and Niwa, M. (1985a).J. Biochem. 97, 1611–1620.

    Google Scholar 

  11. Morita, T., Nakamura, T., Miyata, T., and Iwanaga, S. (1985b).Prog. Clin. Biol. Res. 189, 53–64.

    Google Scholar 

  12. Mosesson, M. W., Wolfenstein-Todel, C., Levin, J., and Bartrand, O. (1979).Thromb. Res. 14, 765–779.

    Google Scholar 

  13. Müller, E. H., Levin, J., and Holme, R. (1975).J. Cell Physiol. 816, 533–543.

    Google Scholar 

  14. Nakamura, S., Takagi, T., Iwanaga, S., Niwa, M., and Takahashi, K. (1976a).J. Biochem. 80, 649–652.

    Google Scholar 

  15. Nakamura, S., Iwanaga, S., Harada, T., and Niwa, M. (1976b).J. Biochem. 80, 1011–1021.

    Google Scholar 

  16. Nakamura, S., Takagi, T., Iwanaga, S., Niwa, M., and Takahashi, K. (1976c).Biochem. Biophys. Res. Commun. 72, 902–908.

    Google Scholar 

  17. Nakamura, S., Morita, T., Iwanaga, S., Niwa, M., and Takahashi, T. (1977).J. Biochem. 81, 1567–1569.

    Google Scholar 

  18. Nakamura, S., Morita, T., Harada-Suzuki, T., Iwanaga, S., Takahashi, K., and Niwa, M. (1982).J. Biochem. 92, 781–792.

    Google Scholar 

  19. Nakamura, T., Morita, T., and Iwanaga, S. (1985).J. Biochem. 97, 1561–1574.

    Google Scholar 

  20. Nakamura, T., Morita, T., and Iwanaga, S. (1986a).Eur. J. Biochem.,154, 511–521.

    Google Scholar 

  21. Nakamura, T., Horiuchi, T., Miyata, T., and Iwanaga, S. (1986b).J. Biochem.,99, 847–857.

    Google Scholar 

  22. Niwa, M., and Waguri, O. (1974).Saikagaku 47, 1–13.

    Google Scholar 

  23. Ohashi, K., Niwa, M., Nakamura, T., Morita, T., and Iwanaga, S. (1984).FEBS Lett. 176, 207–210.

    Google Scholar 

  24. Ohki, M., Nakamura, T., Morita, T., and Iwanaga, S. (1980).FEBS Lett. 120, 217–220.

    Google Scholar 

  25. Ornberg, R. L., and Reese, T. S. (1979).Prog. Clin. Biol. Res. 29, 125–130.

    Google Scholar 

  26. Solum, N. O. (1973).Thromb. Res. 2, 55–70.

    Google Scholar 

  27. Spurling, N. W. (1981).Comp. Biochem. Physiol. 68A, 541–548.

    Google Scholar 

  28. Srimal, S., Miyata, T., Kawabata, S., Miyata, T., and Iwanaga, S. (1985).J. Biochem. 98, 305–318.

    Google Scholar 

  29. Tanaka, S., Nakamura, T., Morita, T., and Iwanaga, S. (1982).Biochem. Biophys. Res. Commun. 105, 717–723.

    Google Scholar 

  30. Takagi, T., Hokama, Y., Miyata, T., Morita, T., and Iwanaga, S. (1984).J. Biochem. 95, 1445–1457.

    Google Scholar 

  31. Tay, J. Y., Seid, R. C., Huhn, R. D., and Liu, T.-Y. (1977).J. Biol. Chem. 255, 4773–4776.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iwanaga, S., Morita, T., Miyata, T. et al. The hemolymph coagulation system in invertebrate animals. J Protein Chem 5, 255–268 (1986). https://doi.org/10.1007/BF01025424

Download citation

Key words

  • limulus coagulation cascade
  • coagulin gel
  • bacterial endotoxins
  • proclotting enzyme
  • factor B, C, G, anti-LPS factor