Skip to main content
  • Special Issue: The Fifth Symposium Of The Federation Of Asian And Oceanian Biochemists. “Enzyme Mechanisms” (Part III)
  • Published:

The hemolymph coagulation system in invertebrate animals

Abstract

A hemocyte lysate from horseshoe crab produced a gel, when exposed to Gram-negative bacterial endotoxins. This gelation reaction of the lysate, so-called Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. Recent biochemical studies on the principle of Limulus test indicate that the hemocytes contain several serine protease zymogens, which constitute a coagulation cascade triggered by endotoxins, and that there is a (1 → 3)-β-d-glucan-mediated coagulation pathway which also results in the formation of gel. Up to now, six protein components, designated coagulogen, proclotting enzyme, factor B, factor C, factor G and anti-LPS factor, all of which are closely associated with the endotoxin-mediated coagulation pathway, have been purified and biochemically characterized. Among these components, the complete amino acid sequences of coagulogens isolated from one American and three Asian species of horseshoe crabs have been established. Moreover, the reconstitution experiment using the isolated clotting factors, C, B, proclotting enzyme and coagulogen in the presence of endotoxin, leads to the formation of coagulin get. Based on these results, we propose here a mechanism for the Limulus coagulation cascade.

This is a preview of subscription content, access via your institution.

References

  • Aketagawa, J., Miyata, T., Ohtsubo, S., Nakamura, T., Morita, T., Hayashi, H., Miyata, T., Iwanaga, S., Takao, T., and Shimonishi, Y. (1986).J. Biol. Chem. 261, 7357–7365.

    Google Scholar 

  • Dumont, J. N., Anderson, E., and Winner, G. (1966).J. morphol. 119, 181–208.

    Google Scholar 

  • Fries, C. R. (1984). InComparative Pathology, Vol. 6 (Cheng, T. C., ed.), Plenum Press, New York, pp. 49–109.

    Google Scholar 

  • Harada-Suzuki, T., Morita, T., Iwanaga, S., Nakamura, S., and Niwa, M. (1982).J. Biochem. 92, 793–800.

    Google Scholar 

  • Levin, J., and Bang, F. B. (1964).Bull. Johns Hopkins Hosp. 115, 265–274.

    Google Scholar 

  • Miyata, T., Usui, K., and Iwanaga, S. (1984a).J. Biochem. 95, 1793–1801.

    Google Scholar 

  • Miyata, T., Hiranaga, M., Umezu, M., and Iwanaga, S. (1984b).J. Biol. Chem. 259, 8924–8933.

    Google Scholar 

  • Miyata, T., Matsumoto, H., Hattori, M., Sakaki, Y., and Iwanaga, S. (1986).J. Biochem.,100, 213–220.

    Google Scholar 

  • Morita, T., Tanaka, S., Nakamura, T., and Iwanaga, S. (1981).FEBS Lett. 129, 318–321.

    Google Scholar 

  • Morita, T., Ohtubo, S., Nakamura, T., Tanaka, S., Iwanaga, S., Ohashi, K., and Niwa, M. (1985a).J. Biochem. 97, 1611–1620.

    Google Scholar 

  • Morita, T., Nakamura, T., Miyata, T., and Iwanaga, S. (1985b).Prog. Clin. Biol. Res. 189, 53–64.

    Google Scholar 

  • Mosesson, M. W., Wolfenstein-Todel, C., Levin, J., and Bartrand, O. (1979).Thromb. Res. 14, 765–779.

    Google Scholar 

  • Müller, E. H., Levin, J., and Holme, R. (1975).J. Cell Physiol. 816, 533–543.

    Google Scholar 

  • Nakamura, S., Takagi, T., Iwanaga, S., Niwa, M., and Takahashi, K. (1976a).J. Biochem. 80, 649–652.

    Google Scholar 

  • Nakamura, S., Iwanaga, S., Harada, T., and Niwa, M. (1976b).J. Biochem. 80, 1011–1021.

    Google Scholar 

  • Nakamura, S., Takagi, T., Iwanaga, S., Niwa, M., and Takahashi, K. (1976c).Biochem. Biophys. Res. Commun. 72, 902–908.

    Google Scholar 

  • Nakamura, S., Morita, T., Iwanaga, S., Niwa, M., and Takahashi, T. (1977).J. Biochem. 81, 1567–1569.

    Google Scholar 

  • Nakamura, S., Morita, T., Harada-Suzuki, T., Iwanaga, S., Takahashi, K., and Niwa, M. (1982).J. Biochem. 92, 781–792.

    Google Scholar 

  • Nakamura, T., Morita, T., and Iwanaga, S. (1985).J. Biochem. 97, 1561–1574.

    Google Scholar 

  • Nakamura, T., Morita, T., and Iwanaga, S. (1986a).Eur. J. Biochem.,154, 511–521.

    Google Scholar 

  • Nakamura, T., Horiuchi, T., Miyata, T., and Iwanaga, S. (1986b).J. Biochem.,99, 847–857.

    Google Scholar 

  • Niwa, M., and Waguri, O. (1974).Saikagaku 47, 1–13.

    Google Scholar 

  • Ohashi, K., Niwa, M., Nakamura, T., Morita, T., and Iwanaga, S. (1984).FEBS Lett. 176, 207–210.

    Google Scholar 

  • Ohki, M., Nakamura, T., Morita, T., and Iwanaga, S. (1980).FEBS Lett. 120, 217–220.

    Google Scholar 

  • Ornberg, R. L., and Reese, T. S. (1979).Prog. Clin. Biol. Res. 29, 125–130.

    Google Scholar 

  • Solum, N. O. (1973).Thromb. Res. 2, 55–70.

    Google Scholar 

  • Spurling, N. W. (1981).Comp. Biochem. Physiol. 68A, 541–548.

    Google Scholar 

  • Srimal, S., Miyata, T., Kawabata, S., Miyata, T., and Iwanaga, S. (1985).J. Biochem. 98, 305–318.

    Google Scholar 

  • Tanaka, S., Nakamura, T., Morita, T., and Iwanaga, S. (1982).Biochem. Biophys. Res. Commun. 105, 717–723.

    Google Scholar 

  • Takagi, T., Hokama, Y., Miyata, T., Morita, T., and Iwanaga, S. (1984).J. Biochem. 95, 1445–1457.

    Google Scholar 

  • Tay, J. Y., Seid, R. C., Huhn, R. D., and Liu, T.-Y. (1977).J. Biol. Chem. 255, 4773–4776.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Iwanaga, S., Morita, T., Miyata, T. et al. The hemolymph coagulation system in invertebrate animals. J Protein Chem 5, 255–268 (1986). https://doi.org/10.1007/BF01025424

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025424

Key words

  • limulus coagulation cascade
  • coagulin gel
  • bacterial endotoxins
  • proclotting enzyme
  • factor B, C, G, anti-LPS factor