Advertisement

Journal of Protein Chemistry

, Volume 5, Issue 4, pp 255–268 | Cite as

The hemolymph coagulation system in invertebrate animals

  • Sadaaki Iwanaga
  • Takashi Morita
  • Toshiyuki Miyata
  • Takanori Nakamura
  • Jun Aketagawa
Special Issue: The Fifth Symposium Of The Federation Of Asian And Oceanian Biochemists. “Enzyme Mechanisms” (Part III)

Abstract

A hemocyte lysate from horseshoe crab produced a gel, when exposed to Gram-negative bacterial endotoxins. This gelation reaction of the lysate, so-called Limulus test, has been widely employed as a simple and very sensitive assay method for endotoxins. Recent biochemical studies on the principle of Limulus test indicate that the hemocytes contain several serine protease zymogens, which constitute a coagulation cascade triggered by endotoxins, and that there is a (1 → 3)-β-d-glucan-mediated coagulation pathway which also results in the formation of gel. Up to now, six protein components, designated coagulogen, proclotting enzyme, factor B, factor C, factor G and anti-LPS factor, all of which are closely associated with the endotoxin-mediated coagulation pathway, have been purified and biochemically characterized. Among these components, the complete amino acid sequences of coagulogens isolated from one American and three Asian species of horseshoe crabs have been established. Moreover, the reconstitution experiment using the isolated clotting factors, C, B, proclotting enzyme and coagulogen in the presence of endotoxin, leads to the formation of coagulin get. Based on these results, we propose here a mechanism for the Limulus coagulation cascade.

Key words

limulus coagulation cascade coagulin gel bacterial endotoxins proclotting enzyme factor B, C, G, anti-LPS factor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aketagawa, J., Miyata, T., Ohtsubo, S., Nakamura, T., Morita, T., Hayashi, H., Miyata, T., Iwanaga, S., Takao, T., and Shimonishi, Y. (1986).J. Biol. Chem. 261, 7357–7365.Google Scholar
  2. Dumont, J. N., Anderson, E., and Winner, G. (1966).J. morphol. 119, 181–208.Google Scholar
  3. Fries, C. R. (1984). InComparative Pathology, Vol. 6 (Cheng, T. C., ed.), Plenum Press, New York, pp. 49–109.Google Scholar
  4. Harada-Suzuki, T., Morita, T., Iwanaga, S., Nakamura, S., and Niwa, M. (1982).J. Biochem. 92, 793–800.Google Scholar
  5. Levin, J., and Bang, F. B. (1964).Bull. Johns Hopkins Hosp. 115, 265–274.Google Scholar
  6. Miyata, T., Usui, K., and Iwanaga, S. (1984a).J. Biochem. 95, 1793–1801.Google Scholar
  7. Miyata, T., Hiranaga, M., Umezu, M., and Iwanaga, S. (1984b).J. Biol. Chem. 259, 8924–8933.Google Scholar
  8. Miyata, T., Matsumoto, H., Hattori, M., Sakaki, Y., and Iwanaga, S. (1986).J. Biochem.,100, 213–220.Google Scholar
  9. Morita, T., Tanaka, S., Nakamura, T., and Iwanaga, S. (1981).FEBS Lett. 129, 318–321.Google Scholar
  10. Morita, T., Ohtubo, S., Nakamura, T., Tanaka, S., Iwanaga, S., Ohashi, K., and Niwa, M. (1985a).J. Biochem. 97, 1611–1620.Google Scholar
  11. Morita, T., Nakamura, T., Miyata, T., and Iwanaga, S. (1985b).Prog. Clin. Biol. Res. 189, 53–64.Google Scholar
  12. Mosesson, M. W., Wolfenstein-Todel, C., Levin, J., and Bartrand, O. (1979).Thromb. Res. 14, 765–779.Google Scholar
  13. Müller, E. H., Levin, J., and Holme, R. (1975).J. Cell Physiol. 816, 533–543.Google Scholar
  14. Nakamura, S., Takagi, T., Iwanaga, S., Niwa, M., and Takahashi, K. (1976a).J. Biochem. 80, 649–652.Google Scholar
  15. Nakamura, S., Iwanaga, S., Harada, T., and Niwa, M. (1976b).J. Biochem. 80, 1011–1021.Google Scholar
  16. Nakamura, S., Takagi, T., Iwanaga, S., Niwa, M., and Takahashi, K. (1976c).Biochem. Biophys. Res. Commun. 72, 902–908.Google Scholar
  17. Nakamura, S., Morita, T., Iwanaga, S., Niwa, M., and Takahashi, T. (1977).J. Biochem. 81, 1567–1569.Google Scholar
  18. Nakamura, S., Morita, T., Harada-Suzuki, T., Iwanaga, S., Takahashi, K., and Niwa, M. (1982).J. Biochem. 92, 781–792.Google Scholar
  19. Nakamura, T., Morita, T., and Iwanaga, S. (1985).J. Biochem. 97, 1561–1574.Google Scholar
  20. Nakamura, T., Morita, T., and Iwanaga, S. (1986a).Eur. J. Biochem.,154, 511–521.Google Scholar
  21. Nakamura, T., Horiuchi, T., Miyata, T., and Iwanaga, S. (1986b).J. Biochem.,99, 847–857.Google Scholar
  22. Niwa, M., and Waguri, O. (1974).Saikagaku 47, 1–13.Google Scholar
  23. Ohashi, K., Niwa, M., Nakamura, T., Morita, T., and Iwanaga, S. (1984).FEBS Lett. 176, 207–210.Google Scholar
  24. Ohki, M., Nakamura, T., Morita, T., and Iwanaga, S. (1980).FEBS Lett. 120, 217–220.Google Scholar
  25. Ornberg, R. L., and Reese, T. S. (1979).Prog. Clin. Biol. Res. 29, 125–130.Google Scholar
  26. Solum, N. O. (1973).Thromb. Res. 2, 55–70.Google Scholar
  27. Spurling, N. W. (1981).Comp. Biochem. Physiol. 68A, 541–548.Google Scholar
  28. Srimal, S., Miyata, T., Kawabata, S., Miyata, T., and Iwanaga, S. (1985).J. Biochem. 98, 305–318.Google Scholar
  29. Tanaka, S., Nakamura, T., Morita, T., and Iwanaga, S. (1982).Biochem. Biophys. Res. Commun. 105, 717–723.Google Scholar
  30. Takagi, T., Hokama, Y., Miyata, T., Morita, T., and Iwanaga, S. (1984).J. Biochem. 95, 1445–1457.Google Scholar
  31. Tay, J. Y., Seid, R. C., Huhn, R. D., and Liu, T.-Y. (1977).J. Biol. Chem. 255, 4773–4776.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Sadaaki Iwanaga
    • 1
  • Takashi Morita
    • 1
  • Toshiyuki Miyata
    • 1
  • Takanori Nakamura
    • 1
  • Jun Aketagawa
    • 1
  1. 1.Department of Biology, Faculty of ScienceKyushu UniversityHigashi-ku, FukuokaJapan

Personalised recommendations