Meteorology and Atmospheric Physics

, Volume 49, Issue 1–4, pp 209–227 | Cite as

Nonhydrostatic, mesobeta-scale, real-data simulations with the Penn State University/National Center for Atmospheric Research mesoscale model

  • T. T. Warner
  • Y. -H. Kuo
  • J. D. Doyle
  • J. Dudhia
  • J. Dudhia
  • D. R. Stauffer
  • N. L. Seaman
Article

Summary

The Penn State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model is a widely used research tool that has been applied in a wide variety of real-data, mesoalpha-scale applications. Recently a nonhydrostatic version of this model has been developed by Dudhia (1993). It is the purpose of this paper to illustrate the capabilities of this modeling system by describing four examples of mesobeta-scale simulations: two of the cases involve maritime processes and two deal with continental weather events. All utilize fully three-dimensional sets of initial conditions that are based on real data, both standard data and from special measurements programs. One case employs the model in a data-assimilation configuration, wherein Newtonian relaxation terms are used in the equations to assimilate data from a variety of platforms. This example of nonhydrostatic four-dimensional data assimilation (FDDA) is performed for the purpose of generating a dynamically consistent four-dimensional data-set, however the same procedure can be used for model initialization. The first case, described in section 2, involves the simulation of a coastal front that forms offshore near the western edge of the Gulf Stream. In the second case, described in section 3, the model is used in the FDDA mode to define the mesobeta-scale windfield over the complex terrain of the region around Grand Canyon, Arizona. In sections 4 and 5 will be described the mesobeta-scale structure of cold fronts, one within a marine cyclone, and another near the Rocky Mountains.

Keywords

Cyclone Cold Front Atmospheric Research Mesoscale Model Gulf Stream 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthes, R. A., Warner, T. T., 1978: Development of hydrodynamic models suitable for air pollution and other mesometeorological studies.Mon. Wea. Rev.,106, 1045–1078.Google Scholar
  2. Anthes, R. A., Hsie, E.-Y., Kuo, Y.-H., 1987: Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR Technical Note, NCAR/TN-282+STR, 66 pp.Google Scholar
  3. Anthes, R. A., 1990: Recent applications of the Penn State/NCAR mesoscale model to synoptic, mesoscale, and climate studies.Bull. Amer. Meteor. Soc.,11, 1610–1629.Google Scholar
  4. Arakawa, A., Lamb, V. R., 1977: Computational design of the basic dynamical process of the UCLA general circulation model.Methods in Computational Physics,17, 173–265.Google Scholar
  5. Bennetts, D. A., Hoskins, B. J., 1979: Conditional symmetric instability — a possible explanation for frontal rainbands.Quart. J. Roy. Meteor. Soc.,105, 945–962.Google Scholar
  6. Bosart, L. F., 1981: The Presidents' Day storm of 18–19 February 1979: A subsynoptic-scale event.Mon. Wea. Rev.,109, 1542–1566.Google Scholar
  7. Bosart, L. F., 1984: The Texas coastal rainstorm of 17–21 September 1979: An example of synoptic-mesoscale interaction.Mon. Wea. Rev.,112, 1108–1133.Google Scholar
  8. Bosart, L. F., Vaudon, C. J., Helsdon, J. H. J., 1972: Coastal frontogenesis.J. Appl. Meteor.,11, 1236–1258.Google Scholar
  9. Carbone, R. E., 1982: A severe winter squall line. Stormwide hydrodynamic structure.J. Atmos. Sci.,39, 258–279.Google Scholar
  10. Chang, J. S., Brost, R. A., Isaksen, I. S. A., Madronich, S., Middleton, P., Stockwell, W. R., Walcek, C. J., 1987: A three-dimensional Eulerian acid deposition model. Physical concepts and formulation.J. Geophys. Res.,92, 14681–14700.Google Scholar
  11. Doyle, J. D., Warner, T. T., 1990: Mesoscale coastal processes during GALE IOP 2.Mon. Wea. Rev.,118, 283–308.Google Scholar
  12. Draghici, I., 1984: Black Sea coastal frontogenesis.Proc. Nowcasting-II Symposium, 3–7 Sept. 1984 (ESA SP-208), Norrkoping, Sweden, 75–79. [Available from the European Space Agency, ESTEC, Noordwijk, Netherlands.]Google Scholar
  13. Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model.J. Atmos. Sci.,46, 3077–3107.Google Scholar
  14. Dudhia, J., 1993: A nonhydrostatic version of the Penn State/NCAR mesoscale model.Mon. Wea. Rev. (in press).Google Scholar
  15. Emanuel, K. A., 1979: Inertial instability and mesoscale convective systems. Part I: Linear theory of inertial instability in rotating viscous fluids.J. Atmos. Sci.,36, 2425–2449.Google Scholar
  16. Grell, G. A., 1992: Prognostic evaluation of assumptions used by cumulus parameterizations.Mon. Wea. Rev. (in press).Google Scholar
  17. Hobbs, P. V., Persson, P. O. G., 1982: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclogenesis. Part V: The structure of narrow cold-frontal rainbands.J. Atmos. Sci.,39, 280–295.Google Scholar
  18. James, P. K., Browning, K. A., 1979: Mesoscale structure of line convection at surface cold fronts.Quart. J. Roy. Meteor. Soc.,105, 371–382.Google Scholar
  19. Kocin, P. J., Uccellini, L. W., 1990: Snowstorms along the northeastern coast of the United States: 1955 to 1985.Meteor. Monogr.,22, No. 44, 280 pp.Google Scholar
  20. Kuo, Y.-H., Reed, R. J., Low-Nam, S., 1992: Thermal structure and airflow in a model simulation of an occluded marine cyclone.Mon. Wea. Rev. (in press).Google Scholar
  21. Riordan, A. J., 1990: Examination of the mesoscale features of the GALE coastal front of 24–25 January 1986.Mon. Wea. Rev.,118, 258–282.Google Scholar
  22. Riordan, A. J., Anderson, J. T., 1991: Dual-Doppler analysis of a coastal front near Cape Hatteras, North Carolina.First International Winter Storm Symposium, 13–18 January, New Orleans, Louisiana, 177–180.Google Scholar
  23. Sanders, F., 1983: Observations of fronts. In: Lilly, D. K., Gal-Chen, T. (eds.)Mesoscale Meteorology-Theories, Observations, and Methods. Dordrecht: Reidel, 175–203.Google Scholar
  24. Shapiro, M. A., Keyser, D., 1990: Fronts, jet streams and the tropopause, chapter 10. In: Newton, C. W., Holopainen, E. O. (eds.)Palmen Memorial Volume. Amer. Meteor. Soc., 167–191.Google Scholar
  25. Stauffer, D. R., Seaman, N. L., 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data.Mon. Wea. Rev.,118, 1250–1277.Google Scholar
  26. Stauffer, D. R., Seaman, N. L., 1991: On mesobeta-scale four-dimensional data assimilation. Preprints, Ninth Conf. on Numerical Weather Prediction, Denver, Amer. Meteor. Soc., 595–598.Google Scholar
  27. Stauffer, D. R., Seaman, N. L., Binkowski, F. S., 1991: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part II: Effects of data assimilation in the planetary boundary layer.Mon. Wea. Rev.,118, 734–754.Google Scholar
  28. Warner, T. T., Seaman, N. L., 1990: A real-time mesoscale numerical weather-prediction system used for research, teaching and public service at Pennsylvania State University.Bull. Amer. Meteor. Soc.,71, 792–805.Google Scholar
  29. Zhang, D.-L., Anthes, R. A., 1982: A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data.J. Appl. Meteor.,21, 1594–1609.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • T. T. Warner
    • 1
    • 3
  • Y. -H. Kuo
    • 2
  • J. D. Doyle
    • 1
  • J. Dudhia
    • 2
  • J. Dudhia
    • 2
  • D. R. Stauffer
    • 1
  • N. L. Seaman
    • 1
  1. 1.Department of MeteorologyThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Mesoscale and Microscale Meteorology DivisionNational Center for Atmospheric ResearchBoulderUSA
  3. 3.Earth System Science CenterThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations