Advertisement

Journal of Protein Chemistry

, Volume 2, Issue 2, pp 113–129 | Cite as

Synthesis and characterization of iodopropyl derivatives of adenosine 3′,5′-cyclic-monophosphate: Potential affinity labels of cAMP binding sites in enzymes

  • Jessica E. Reimann
  • Paul G. Grant
  • Robert W. Colman
  • Roberta F. Colman
Article

Abstract

The syntheses of two potential cAMP affinity lables, 1,N6-(3-iodopropyleno)adenosine 3′,5′-cyclic-monophosphate and 2′-O-(2-iodo-3-hydroxypropyl) adenosine 3′,5′-cyclic-monophosphate, by a two-step chemical procedure are described. TheN6- and 2′-O-allyl intermediates were prepared selectively by alkylation of cAMP in organic and alkaline aqueous solutions, respectively. Treatment of theN6-allyl derivative withN-iodosuccinimide resulted in iodine addition to the double bond and cyclization to theN1 position of the purine ring. The iodohydrin analog was synthesized by reaction of 2′-O-allyl-cAMP with potassium iodide and thallium trichloride in acetate buffered solution. The products were isolated by column chromatography and characterized by thin-layer chromatography, elemental analysis, and ultraviolet,13C, and1H NMR spectroscopy. The cAMP analogs were found to react with lysine and cysteine. Both cAMP derivatives were tested for their reaction with the low-K m cAMP phosphodiesterase of human platelets. The ribose-substituted analog functioned as a competitive inhibitor (K I =0.72 μM) and caused a time-dependent irreversible inactivation of the phosphodiesterase. In contrast, the purine-substituted derivative acted neither as a reversible competitive inhibitor nor as an irreversible inactivator of the enzyme. These results indicate the specificity of these potential cAMP analogs in their interaction with the phosphodiesterase.

Key words

cyclic AMP derivatives affinity labels chemical modification of enzymes nucleotide affinity labels cAMP phosphodiesterase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, T., Ochai, Y., and Hidaka, H. (1977).Mol. Pharm. 13, 400.Google Scholar
  2. Block, R. J., Durrum, E. L., and Zweig, C. (1958a). InPaper Chromatography and Paper Electrophoresis, 2nd ed., Academic, New York, p. 292.Google Scholar
  3. Block, R. J., Durrum, E. L., and Zweig, C. (1958b). InPaper Chromatography and Paper Electrophoresis, 2nd ed., Academic, New York, p. 131.Google Scholar
  4. Brookes, P., and Lawley, P. D. (1960).J. Chem. Soc. 1960, 539.Google Scholar
  5. Cambie, R. C., Hayward, R. C., Roberts, J. L., and Rutledge, P. S. (1974a).J. Chem. Soc., Perkin Trans. 1, 1120.Google Scholar
  6. Cambie, R. C., Hayward, R. C., Roberts, J. L., and Rutledge, P. S. (1974b).J. Chem. Soc., Perkin Trans. 1, 1858.Google Scholar
  7. Chedda, G. B. and Hall, R. H. (1966).Biochemistry 5, 2082.Google Scholar
  8. Cooperman, B. S. and Brunswick, D. J. (1973).Biochemistry 12, 4079.Google Scholar
  9. Cramer, H. and Schultz, J., eds. (1977).Cyclic 3',5'-Nucleotides: Mechanisms of Action, Wiley, New York.Google Scholar
  10. Dreyfuss, G., Schwartz, K., Blout, E. R., Barrio, J. R., Liu, F.-T., and Leonard, N. J. (1978).Proc. Natl. Acad. Sci. USA 74, 1199.Google Scholar
  11. Falbriard, J.-G., Posternak, Th., and Sutherland, E. W. (1967).Biochim. Biophys. Acta 148, 99.Google Scholar
  12. Gillen, R. G. and Nagyvary, J. (1976).Biochem. Biophys. Res. Commun. 68, 836.Google Scholar
  13. Gmelin, R. and Virtanen, A. I. (1959).Acta Chem. Scand. 13: 1469.Google Scholar
  14. Grant, P. G., Colman, R. F., Sinha, A. K., and Colman, R. W. (1981).Thrombos. Haemostas. 46, 173.Google Scholar
  15. Haley, B. E. (1975).Biochemistry 14, 3852.Google Scholar
  16. Horch, U., Kadatz, R., Kopitar, Z., and Weisenberger, H. (1970).Thrombos. Diath. Haemorrh. 42 (Suppl.), 253.Google Scholar
  17. Jardetzky, C. (1962).J. Am. Chem. Soc. 84, 62.Google Scholar
  18. Jastorff, B. and Friest, W. (1974).Bioorg. Chem. 3, 103.Google Scholar
  19. Jones, J. W. and Robins, R. L. (1963).J. Am. Chem. Soc. 85, 193.Google Scholar
  20. Kazimierczuk, Z., Darzynkiewicz, E., and Shugar, D. (1976).Biochemistry 15, 2735.Google Scholar
  21. Lapper, R. D., Mantsch, H. H., and Smith, I. C. P. (1973).J. Am. Chem. Soc. 95, 2878.Google Scholar
  22. Markwardt, F. and Hoffman, A. (1970).Biochem. Pharmac. 19, 2519.Google Scholar
  23. Meyer, R. F., Shuman, D. A., Robins, R. K., Miller, J. P., and Simon, L. N. (1973).J. Med. Chem. 16, 1319.Google Scholar
  24. Miller, J. P. (1977). In Cramer, H., and Schultz, J. (eds.),Cyclic 3',5'-Nucleotides: Mechanism of Action Wiley, New York, p.77.Google Scholar
  25. Miller, J. P. and Robins, R. K. (1976).Ann. Rep. Med. Chem. 11, 291.Google Scholar
  26. Miller, J. P., Boswell, K. H., Muneyama, K., Tolman, R. L., Scholten, M. B., Robins, R. K., Simon, L. N., and Shuman, D. A. (1973a).Biochem. Biophys. Res. Commun. 55, 843.Google Scholar
  27. Miller, J. P., Shuman, D. A., Scholten, M. B., Dimmit, M. K., Stewart, C. M., Khwaja, T. A., Robins, R. K., and Simon, L. N. (1973b).Biochemistry 12, 1010.Google Scholar
  28. Novinson, T., Miller, J. P., Scholten, M., Robins, R. K., Simon, L. N., O'Brien, D. E., and Meyer, R. B. (1975).J. Med. Chem. 18, 460.Google Scholar
  29. Robins, M. J., Hall, R. H., and Thedford, R. (1967).Biochemistry 6, 1837.Google Scholar
  30. Severin, E. A., Nesterova, M. V., Sashchenko, L. P., Rasumova, V. V., Tunitiskaya, V. L., Kochetkov, S. N., and Gulyaev, N. N. (1975).Biochim. Biophys. Acta 384, 413.Google Scholar
  31. Sinha, A. K. and Colman, R. W. (1981).Anal. Biochem. 113, 239.Google Scholar
  32. Sinha, A. K., Shattil, S. J., and Colman, R. W. (1977).J. Biol. Chem. 252, 3310Google Scholar
  33. Smith, M. and Jardetsky, C. D. (1968).J. Mol. Spectrosc. 28, 70.Google Scholar
  34. Ts'o, P. O. P., Schweizer, M. P., and Hollis, D. P. (1969).Ann. N.Y. Acad. Sci. 158, 256.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Jessica E. Reimann
    • 1
    • 2
  • Paul G. Grant
    • 1
    • 2
  • Robert W. Colman
    • 1
    • 2
  • Roberta F. Colman
    • 1
    • 2
  1. 1.Department of ChemistryUniversity of DelawareNewark
  2. 2.Thrombosis Research CenterTemple University School of MedicinePhiladelphia

Personalised recommendations