Meteorology and Atmospheric Physics

, Volume 63, Issue 1–2, pp 105–117 | Cite as

Regional climate modelling

  • J. L. McGregor
Article

Summary

Regional climate modelling is becoming increasingly popular. The most common technique employs high resolution limited-area models to economically produce detaited climatologies for selected regions. A short review is presented of the underlying principles, recent simulations limitations of the method and future prospects.

Keywords

Climate Change Waste Water High Resolution Water Management Water Pollution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arakawa, A., 1972:Design of the UCLA general circulation model. Numerical Simulation of Weather and Climate. Technical Report No. 7, Dept. of Meteorology, University of California, Los AngelesGoogle Scholar
  2. Bhaskaran, B., Jones, R. G., Murphy, J. M., Noguer, M., 1996: Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments.Climate Dyn.,12, 573–587Google Scholar
  3. Cress, A., Majewski, D., Podzun, R., Renner, V., 1995: Simulation of European climate with a limited area model. Part I: Observed boundary conditions.Contrib. Atmos. Phys.,68, 161–178.Google Scholar
  4. Cubasch, U., Waszkewitz, J., Hegerl, G. C., Perlwitz, J., 1995: Regional climate changes as simulated in time-slice experiments. Report No. 153, Max-Planck-Institut für Meteorologie, Bundestr. 55, Hamburg, Germany.Google Scholar
  5. Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models.Quart. J. Roy. Meteor. Soc.,102, 405–418.Google Scholar
  6. Déqué, M., Piedlievre, J. Ph., 1995: High resolution climate simulation over Europe.Climate Dyn. 11, 321–339.Google Scholar
  7. Dickinson, R. E., Errico, R. M., Giorgi, F., Bates, G. T., 1989: A regional climate model for the western United States.Clim. Change,15, 383–422.Google Scholar
  8. Gates, L. W. 1992: AMIP: the Atmospheric Model Intercomparison Project.Bull. Amer. Meteor. Soc.,73, 1962–1970.Google Scholar
  9. Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a general circulation model.J. Climate,3, 941–963.Google Scholar
  10. Giorgi, F., 1991: Sensitivity of simulated summertime precipitation over the western United States to different physics parameterizations.Mon. Wea. Rev.,119, 2870–2888.Google Scholar
  11. Giorgi, F., 1995: Perspectives for regional earth system modeling.Global and Planetary Change,10, 23–42.Google Scholar
  12. Giorgi, F., Marinucci, M. R., 1996: Improvements in the simulation of surface climatology over the European region with a nested modeling system.Geophys. Res. Lett.,23, 273–276.Google Scholar
  13. Giorgi, F., Mearns, L. O., 1991: Approaches to the simulation of regional climate change: a review.Rev. Geophys.,29, 191–216.Google Scholar
  14. Giorgi, F., Marinucci, M. R., Visconti, G., 1992: A 2XCO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model. 2. Climate change scenario.J. Geophys. Res.,97, 10011–10028.Google Scholar
  15. Giorgi, F., Bates, G. T., Nieman, S. J., 1993a: The multiyear surface climatology of a regional atmospheric model over the western United States.J. Climate,6, 75–95.Google Scholar
  16. Giorgi, F., Marinucci, M. R., Bates, G. T., 1993b: Development of a second-generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes.Mon. Wea. Rev.,121, 2794–2813.Google Scholar
  17. Giorgi, F., Marinucci, M. R., Bates, G. T., DeCanio, G., 1993c: Development of a second-generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions.Mon. Wea. Rev.,121, 2814–2832.Google Scholar
  18. Giorgi, F., Brodeur, C. S., Bates, G. T., 1994: Regional climate change scenarios over the United States produced with a nested regional climate model.J. Climate,7, 375–399.Google Scholar
  19. Hirakuchi, H., Giorgi, F., 1995: Multiyear present-day and 2×CO2 simulations of monsoon climate over eastern Asia and Japan with a regional climate model nested in a general circulation model.J. Geophys. Res.,100, 21105–21125.Google Scholar
  20. Horel, J. D., Pechmann, J. B., Hamann, A. N., Geisler, J. E., 1994: Simulations of the Amazon Basin circulation with a regional model.J. Climate,7, 56–71.Google Scholar
  21. Hostetler, S. W., Giorgi, F., Bates, G. T., Bartlein, P. J., 1994: Lake-atmosphere feedbacks associated with paleolakes Bonneville and Lahontan.Science,263, 665–668.Google Scholar
  22. Jones, R. G., Murphy, J. M., Noguer, M., 1995: Simulation of climate change over Europe using a nested regional-climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries.Quart. J. Roy. Meteor. Soc.,121, 1413–1449.Google Scholar
  23. Jones, R. G., Murphy, J. M., Noguer, M., Keen, A. B., 1996: Simulation of climate change over Europe using a nested regional-climate model. II: Comparison of driving and regional model responses to a doubling of carbon dioxide.Quart. J. Roy. Meteor. Soc. (submitted).Google Scholar
  24. Juang, H.-M. H., Kanamitsu, M., 1994: The NMC nested regional spectral model.Mon. Wea. Rev.,122, 3–26.Google Scholar
  25. Kida, H., Koide, T., Sasaki, H., Chiba, M., 1991: A new approach for coupling a limited area model to a GCM for regional climate simulations.J. Meteor. Soc. Japan,69, 723–728.Google Scholar
  26. Krishnamurti, T. N., Ramanathan, Y., Pan, H-L., Pasch, R. J., Molinari, J. 1980: Cumulus parameterization and rainfall tates I.Mon. Wea. Rev.,108, 465–472.Google Scholar
  27. Kuo, H. L., 1974: Further studies of the parameterization of the influence of cumulus convection on large-scale flow.J. Atmos. Sci.,31, 1232–1240.Google Scholar
  28. Leung, L. R., Wigmosta, M. S., Ghan, S. J., Epstein, D. J., Vail, L. W., 1996: Application of a subgrid orographic precipitation/surface hydrology scheme to a mountain Watershed.J. Geophys. Res.,101, 12803–12817.Google Scholar
  29. Liu, Y., Giorgi, F., Washington, W. M., 1994: Simulation of summer monsoon clinate over east Asia with an NCAR regional climate model.Mon. Wea. Rev.,122, 2331–2348.Google Scholar
  30. Lüthi, D., Cress, A., Davies, H. C., Frei, C., Schär, C., 1996: Interannual variability and regional climate simulations.Theor. Appl. Climatol.,53, 185–209.Google Scholar
  31. Lynth, A. H., Chapman, W. L., Walsh, J. E., Weller, G., 1995: Development of a regional climate model of the western Arctic.J. Climate,8, 1555–1570.Google Scholar
  32. Marinucci, M. R., Giorgi, F., 1992: A 2XCO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model 1. Present-day seasonal climate simulation.J. Geophys. Res.,97, 9989–10009.Google Scholar
  33. Marirucci, M. R., Giorgi, F., Beniston, M., Wild, M., Tschuck, P., Ohmura, A., Bernasconi, A., 1995: High resolution simulations of January and July climate over the western alpine region with a nested regional modeling system.Theor. Appl. Climatol.,51, 119–138.Google Scholar
  34. McGregor, J. L., Walsh, K. 1993: Nested simulations of perpetual January climate over the Australian region.J. Geophys. Res.,98, 23283–23290.Google Scholar
  35. McGregor, J. L., Walsh, K., 1994: Climate change simulations of Tasmanian precipitation using multiple nesting.J. Geophys. Res.,99, 20889–20905.Google Scholar
  36. McGregor, J. L., Walsh, K. J., Katzfey, J. J., 1993: Nested modelling for regional climate studies. In: Jakeman, A. J., Beck, M. B., McAleer, M. J. (eds.)Modelling Change in, Environmental Systems. Chichester: John Wiley, pp. 367–386.Google Scholar
  37. Mearns L. O., Giorgi, F., McDaniel, L., Shields, C. 1995a: Analysis of daily variability of precipitation in a nested regional climate model: comparison with observations and doubled CO2 results.Global and Planetary Change,10, 55–78.Google Scholar
  38. Mearns, L. O., Giorgi, F., McDaniel, L., Shields, C., 1995b: Analysis of variability and diurnal range of daily temperature in a nested regional climate model: comparison with observations and doubled CO2 results.Climate Dyn. 11, 193–209.Google Scholar
  39. Paegle, J., Paegle, J. N., Lewis, F. P., 1983: Large-scale motions of the tropics in observations and theory.Pageoph,121, 948–982.Google Scholar
  40. Podzun, R., Cress, A., Majewski, D., Renner, V., 1995: Simulation of European climate with a limited area model. Part II. AGCM boundary conditions.Contrib. Atmos. Phys.,68, 205–225.Google Scholar
  41. Rasch, P. J., Boville, B. A., Brasseur, G. P., 1995: A threedimensional general circulation model with coupled chemistry for the middle atmosphere.J. Geophys. Res.,100, 9041–9071.Google Scholar
  42. Sasaki, H., Kida, H., Koide, T., Chiba, M., 1995: The performance of long-term integrations of a limited area model with the spectral boundary coupling method.J. Meteor. Soc. Japan,73, 165–181.Google Scholar
  43. Semazzi, F. H. M., Lin, N-H., Lin, Y-L., Giorgi, F., 1993: A nested model study of the Sahelian climate response to sea-surface temperature anomalies.Geophys. Res. Lett.,20, 2897–2900.Google Scholar
  44. Takle, E. S., 1995: Project to intercompare regional climate simulations (PIRCS), preliminary workshop, 17–18 November 1994.Bull. Amer. Meteor. Soc,76, 1625–1626.Google Scholar
  45. Vukicevic, T., Paegle, J., 1989: The influence of one-way interacting lateral boundary conditions upon predictability of flow in bounded numerical models.Mon. Wea. Rev.,117, 340–350.Google Scholar
  46. Walsh, K., McGregor, J. L., 1995: January and July climate simulations over the Australian region using a limited area model.J. Climate,8, 2387–2403.Google Scholar
  47. Walsh, K., McGregor, J. L., 1996a: Simulations of Antarctic climate using a limited area model.J. Geophys. Res.,101, 19093–19108.Google Scholar
  48. Walsh, K., McGregor, J. L., 1996b: An assessment of simulations of climate variability over Australia with a limited area model.Int. J. Climatol. (in press).Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • J. L. McGregor
    • 1
  1. 1.CSIRO Division of Atmospheric ResearchMelbourneAustralia

Personalised recommendations