Meteorology and Atmospheric Physics

, Volume 63, Issue 1–2, pp 15–29 | Cite as

Regional modeling: A theoretical discussion

  • A. Staniforth
Article

Summary

The goal of regional modeling is to make a detailed forecast for a given limited area of interst by focusing resolution over it and the immediate vicinity. As a consequence, the period of validity is necessarily more restricted than would otherwise be the case, and this is the price that must be paid for locally-enhanced resolution. The principal attributes of the non-interactive and interactive strategies for regional modeling are described. For the non0interactive strategy, particular emphasis is placed on the importance, difficulty, and impact, of well-posedness for open-domain problems. A methodology is given for estimating the size of numerical buffer zones required to obtain a forecast uncontaminated by the inward propagation of inaccurately-specified lateral boundary conditions. The interactive strategy addresses the well-posedness issue of (non-interactive) limited-area models. A computational overhead is incurred but this can be reduced through the use of variable resolution. It is argued that regardless of the preferred regional modeling strategy, experiments should be undertaken to today's regional models under carefully-controlled conditions, to reflect the significant reduction over the past two decades of other sources of error.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthes, R.A., 1983: Regional models of the atmosphere in middle latitudes.Mon. Wea. Rev.,111, 1306–1335.Google Scholar
  2. Arakawa, A., 1984: Boundary conditions in limited-area models.Proceedings of the Workshop on Limited-Area Numerical Weather Prediction Models for Computers of Limited Power. Short and Medium-Range Weather Prediction Research Publication Series, No.13 (WMO/TD No. 19), World Meteorological Organisation, 403–434.Google Scholar
  3. Asselin, R., 1972: Frequency filter for time integrations.Mon. Wea. Rev.,100, 487–490.Google Scholar
  4. Charney, J.G., Fjørtoft, R., Neumann, J. von., 1950: Numerical integration of the barotropic vorticity equation. Tellus,2, 237–254.Google Scholar
  5. Chouinard, C., Mailhot, J., Mitchell, H.L., Staniforth, A., Hogue, R., 1994: The Canadian regional data assimilation system: operational and research applications.Mon. Wea. Rev.,122, 1306–1325.Google Scholar
  6. Côté, J., Roch, M., Staniforth, A., Fillion, L., 1993: A variable-resolution semi-Lagrangian finite-element global model of the shallow-water equations.Mon. Wea. Rev.,121, 231–243.Google Scholar
  7. Courtier, P., Geleyn, J.-F., 1988: A global numerical weather prediction model with variable resolution: application to the shallow-water equations.Quart. J. Roy. Meteor. Soc.,114, 1321–1346.Google Scholar
  8. Courtier, P., Thépaut, J.-N., Hollingsworth, A., 1994: A strategy for operational implementation of 4D-Var, using an incremental approach.Quart. J. Roy. Meteor. Soc.,120, 1367–1388.Google Scholar
  9. Davies, H.C., 1976: A lateral boundary formulation for multi-level prediction models.Quart. J. Roy. Meteor. Soc.,102, 405–418.Google Scholar
  10. DiMego, G. J., Mitchell, K. E., Petersen, R. A., Hoke, J.E., Gerrity, J. P., Tuccilo, J. C., Wobus, R. L., Juang, H. H., 1992: Changes to NMC's regional analysis and forecast system.Wea. Forecasting,7, 185–198.Google Scholar
  11. Errico, R. M., Vukicevic, T., Raeder, K., 1993: Comparison of initial and lateral boundary condition sensitivity for a limited-area model.Tellus,45A, 539–557.Google Scholar
  12. Fillion, L., Roch, M., 1992: Variation implicit normal-mode initialization for a multilevel model.Mon. Wea. Rev.,120, 1050–1076.Google Scholar
  13. Fillion, L., Mitchell, H. L., Ritchie, H., Staniforth, A., 1995: The impact of a digital filter finalization technique in a global data assimilation system.Tellus,47A, 304–323.Google Scholar
  14. Gravel, S., Staniforth, A., 1992: Variable resolution and robustness.Mon. Wea. Rev.,120, 2633–2640.Google Scholar
  15. Janjic, Z. I., Mesinger, F., 1989: Response to small-scale forcing on two staggered grids used in finite-difference models of the atmosphere.Quart. J. Roy. Meteor. Soc.,115, 1167–1176.Google Scholar
  16. Keith, T.E.C. (ed.), 1995: The 1992 eruptions of crater peak vent, Mount Spurr volcano, Alaska. U.S. Geological Survey Bulletin No. 2139, U.S. Dept of the Interior, Denver, Co., 223 pp.Google Scholar
  17. Kurihara, Y., Kerr, C., Bender, M., 1989: An improved numerical scheme to treat the open lateral boundary of a regional model.Mon. Wea. Rev.,117, 2714–2722.Google Scholar
  18. Lynch, P., Huang, X.-Y., 1994: Diabatic initialization using recursive filters.Tellus,46A, 583–597.Google Scholar
  19. Mailhot, J., Sarrazin, R., Bilodeau, B., Brunet, N., Méthot, A., Pellerin, G., Chouinard, C., Garand, L., Girard C., Hogue, R., 1995: Changes to the Canadian regional forecast system: description and evaluation of the 50-km version.Atmos.-Ocean,33, 55–80.Google Scholar
  20. Mesinger, F., 1973: A method for constructon of secondorder accuracy difference schemes permitting no false two-grid-interval wave in the height field.Tellus,25, 444–458.Google Scholar
  21. Mesinger, F., 1995: Dynamics-formulation and numerical methods. Proceedings of the WMO International Workshop on Limited Area and Variable Resolution Models (Beijing, China, 23–27 Oct 1995), Programme on Weather Prediction Research Report Series No. 7, WMO/TD-No. 699, World Meteorological Organisation, Geneva, 19–28.Google Scholar
  22. Mesinger, F., Janjic, Z. I., Nickovic, S., Gavrilov, D., Deaven, D. G., 1988: The step-mountain coordinate-model description and performance for cases of Alpine lee cyclogenesis and for a case of Appalachian redevelopment.Mon. Wea. Rev.,116, 1493–1518.Google Scholar
  23. Oliger, J., Sundström, A., 1978: Theoretical and practical aspects of some initial boundary value problems in fluid dynamics.S.I.A.M. J. Appl. Math.,35, 419–446.Google Scholar
  24. Paegle, J., 1989: A variable resolution global model based upon Fourier and finite element representation.Mon. Wea. Rev.,117, 583–606.Google Scholar
  25. Paegle, J., Yang, Q., Wang, M., 1977: Predictability in limited area and global models.Meteorol. Atmos. Phys.,63, 53–69.Google Scholar
  26. Perkey, D. J., Kreitzberg, C., 1976: A time-dependent lateral boundary scheme for limited-area primitive equation models.Mon. Wea Rev.,104, 744–755.Google Scholar
  27. Phillips, N., 1979: The nested grid model.NOAA Tech. Rep. NWS 22, U.S. Dept. of Commerce, Silver Spring, Md.Google Scholar
  28. Robert, A., Yakimiw, E., 1986: Identification and elimination of an inflow boundary computational solution in limited area model integrations.Atmos.-Ocean,24, 369–385.Google Scholar
  29. Staniforth, A., Côté, J., Gravel, S., Méthot, A., Patoine, A., Roch, M., 1995: Developing an integrated atmospheric environment modeling system. In: Morton, K.W., Baines, M. J., (eds.)Numerical Methods for Fluid Dynamics V. Proceedings of the ICFD Conference on Numerical Methods for Fluids, Oxford, U.K., Oxford. Clarendon Press, pp.95–111.Google Scholar
  30. Tanguay, M., Robert, A., Laprise, R., 1990: A semi-implicit semi-Lagrangian fully compressible regional forecast model.Mon. Wea. Rev.,118, 1970–1980.Google Scholar
  31. Williamson, D. L., Browning, G. L., 1975: Formulation of the lateral boundary conditions for the NCAR limited area model.J. Appl. Meteor.,13, 8–16.Google Scholar
  32. Yakimiw, E., Robert, A., 1990: Validation experiments for a nested grid-point regional forecast model.Atmos.-Ocean,28, 466–472.Google Scholar
  33. Zupanski, M., 1993: Regional four-dimensional variational data assimilation in a quasi-operational forecasting environment.Mon. Wea. Rev.,121, 2396–2408.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • A. Staniforth
    • 1
  1. 1.Recherche en prévision numériqueService de l'environment atmosphériqueDorvalCanada

Personalised recommendations