Journal of Protein Chemistry

, Volume 4, Issue 4, pp 227–234 | Cite as

Binding of nicotinamide nucleotides to dihydrolipoamide dehydrogenase measured with spin-labeled analogs

  • Dieter F. Schrenk
  • Hans Bisswanger


Binding of NAD and NADH to dihydrolipoamide dehydrogenase fromEscherichia coli and from pig heart was measured using the spin-labeled analogsN6-(2,2,6,6-tetramethylpiperidine-4-yl-1-oxyl)-NAD and -NADH. A decrease in the peak amplitudes of the respective EPR spectra results after adding enzyme to the cofactor analogs. With the bacterial enzyme normal hyperbolic saturation behavior with the NAD analog and one binding site per subunit (K s =0.51 mM) are observed, while the NADH analog reveals a sigmoidal binding characteristic. A high-affinity and a low-affinity site (K s =0.087 and 0.33 mM) are found for binding of the NAD analog to the pig heart enzyme and only one type of binding site is observed for the NADH analog (K s =22 µM).

Key words

EPR measurements NAD binding cooperativity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramovitz, A., and Massey, V. (1976).J. Biol. Chem. 251, 5327–5336.Google Scholar
  2. Guest, J. R. (1974).J. Gen. Microbiol. 80, 103–117.Google Scholar
  3. Hansen, R. G., and Henning, U. (1966).Biochim. Biophys. Acta 122, 355–358.Google Scholar
  4. Massey, V. (1963). InThe Enzymes, 2nd ed., Vol. 7, pp. 275–306.Google Scholar
  5. Massey, V., Gibson, Q. H., and Veeger, C. (1960).Biochem. J. 77, 341–351.Google Scholar
  6. Matthews, R. G., and Williams, C. H. (1976).J. Biol. Chem. 251, 3956–3964.Google Scholar
  7. Reed, J. K. (1973).J. Biol. Chem. 248, 4834–4839.Google Scholar
  8. Reed, L. J. (1974).Acc. Chem. Res. 7, 40–46.Google Scholar
  9. Rice, D. W., Schulz, G. E., and Guest, J. R. (1984).J. Mol. Biol. 174, 483–496.Google Scholar
  10. Sanadi, D. R. (1963). InThe Enzymes, 2nd ed. Vol. 7, pp. 307–344.Google Scholar
  11. Schmincke-Ott, E. (1981). Ph.D. Thesis, University of Tübingen.Google Scholar
  12. Schmincke-Ott, E., and Bisswanger, H. (1981).Eur. J. Biochem. 114, 413–420.Google Scholar
  13. Schrenck, D. F., and Bisswanger, H. (1984).Eur. J. Biochem. 143, 561–566.Google Scholar
  14. Schulz, G. E., Schirmer, R. N., Sachsenheimer, W., and Pai, E. (1978).Nature 273, 120–124.Google Scholar
  15. Shen, L. C., and Atkinson, D. E. (1970).J. Biol. Chem. 245, 5974–5978.Google Scholar
  16. Su, G., and Wilson, J. E. (1971).Arch Biochem. Biophys. 143, 253–260.Google Scholar
  17. Trommer, W. E., Wenzel, H. and Pfeiderer, G. (1974).Liebigs Ann. Chem. 1974, 1357–1359.Google Scholar
  18. Veeger, C., Fehrmann, H., Visser, A. J. W. G., Grande, H. J., Müller, F., and Santema, J. S. (1975). InReactivity of Flavins (Yagi, K., ed.), University Park Press, Baltimore, pp. 119–136.Google Scholar
  19. Visser, J., Voetberg, H., and Veeger, C. (1970). InPyridine-Nucleotide-Dependent Dehydrogenases (Sund, H., ed.), Springer, Berlin, pp. 359–373.Google Scholar
  20. Warburg, O., and Christian, W. (1941).Biochem. Z. 310, 384–421.Google Scholar
  21. Wenzel, H. R., and Trommer, W. E. (1977).FEBS Lett. 78, 184–188.Google Scholar
  22. Wilkinson, K. D., and Williams, C. H. (1979).J. Biol. Chem. 254, 863–871.Google Scholar
  23. Wilkinson, K. D., and Williams, C. H. (1981).J. Biol. Chem. 256, 2307–2317.Google Scholar
  24. Williams, C. H. (1965).J. Biol. Chem. 240, 4793–4800.Google Scholar
  25. Williams, C. H. (1976). InThe Enzymes, 3rd edn., Vol. 13, pp. 89–173.Google Scholar
  26. Zantema, A., Trommer, W. E., Wenzel, H. & Robillard, G. T. (1977).Eur. J. Biochem. 72, 175–184.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Dieter F. Schrenk
    • 1
  • Hans Bisswanger
    • 1
  1. 1.Physiologisch-Chemisches InstitutUniversity of TübingenTübingenWest Germany

Personalised recommendations