Advertisement

Biotechnology Letters

, Volume 10, Issue 10, pp 713–718 | Cite as

Growth ofCatharanthusroseus cell suspensions in bioreactors: On-line analysis of oxygen and carbon dioxide levels in inlet and outlet gas streams

  • P. A. Bond
  • M. W. Fowler
  • A. H. Scragg
Article

Summary

Catharanthusroseus cells (C87N) grown in a 30 litre airlift vessel achieved a growth rate of 0.366 day−1. The maximum biomass yield (9.13 gl−1) was recorded after 168 hours (7 days). On-line analysis of the composition of inlet and outlet gas streams during the growth cycle allowed calculation of the metabolic activity of the cultures. Oxygen uptake on a dry weight basis reached a maximum of 4.5×10−4 Moles O2 g dry weight−1 h−1 after 96 hours (during the mid-logarithmic phase of growth) and a maximum of 2.7×10−3 Moles O2 l−1 h−1 on a volume basis (towards the end of the logarithmic phase). Carbon dioxide production ran in parallel with oxygen use with maxima at 4.2×10−4 Moles CO2 g dry weight−1 h−1 and 3.4×10−3 Moles g l−1 h−1 respectively.

Keywords

Biomass Carbon Dioxide Bioorganic Chemistry Oxygen Uptake Biomass Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dalton, C.C. and Street, H.E. (1976). In Vitro 12, 485–494.Google Scholar
  2. Ducos, J.P., Feron, G. and Pareilleux, A. (1988) Plant Cell, Tissue and Organ Culture, 13, 167–178.Google Scholar
  3. Gathercole, R.W.E., Mansfield, K.J. and Street, H.E. (1976) Physiol. Plant. 37, 213–217.Google Scholar
  4. Handel, E.V. (1967). Anal. Biochem. 19, 193–194.Google Scholar
  5. Hegarty, P.K., Smart, N.J., Scragg, A.H. and Fowler M.W. (1986). J. Expl. Botany. 37, 1911–1920.Google Scholar
  6. Kato, A., Shinizu, Y. and Nagai, S. (1975) J. Ferment. Technol 53, 744–751.Google Scholar
  7. Kessel, R.H.G. and Carr, A.H. (1972) J. Expl. Botany. 23, 996–1007.Google Scholar
  8. Martin, S.M. (1980). Mass culture systems for plant cell suspensions. In: Plant Cell Culture as a Source of Biochemicals. Staba, E.J. ed. pp 149–166. Boca Raton, CRC Press.Google Scholar
  9. Maurel, B. and Pareilleux, A. (1985) Biotechnol. Lett. 7, 313–318.Google Scholar
  10. Morris, P. (1986). Planta Medica. 2, 121–126.Google Scholar
  11. Nesius, K.K. and Fletcher, J.S. (1973) Physiol. Plant. 28, 259–263.Google Scholar
  12. Pareilleux, A. and Vinas, R. (1983) J. Ferment. Technol. 61, 429–433.Google Scholar
  13. Scragg, A.H., Morris, P., Allan, E.J., Bond, P., Hegarty, P., Smart, N.J. and Fowler, M.W. (1987) The effect of scale-up on plant cell culture performance. In: Plant and Animal Cells: Process possibilities. Webb, C. and Marituna, F. eds. pp 77–91. Chichester, Ellis Horwood Ltd.Google Scholar
  14. Scragg, A.H., Morris, P., Allan, E.J., Bond, P. and Fowler, M.W. (1987) Enzyme Microb. Technol. 9, 619–623.Google Scholar
  15. Smart, N.J. and Fowler, M.W. (1984). Applied Biochem. Biotechnol. 9, 209–216.Google Scholar
  16. Wagner, F. and Vagelman, H. (1977). Cultivation of plant tissue cultures in bioreactors and formation of secondary metabolites. In: Plant Tissue Culture and Its Biotechnological Application. Barz, W., Reinhard, E. and Zenk, M.H. eds. pp 245–252. Berlin, Springer-Verlag.Google Scholar
  17. Widholm, J.M. (1972) Stain Technology 47, 189–194.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • P. A. Bond
    • 1
  • M. W. Fowler
    • 1
  • A. H. Scragg
    • 1
  1. 1.Wolfson Institute of Biotechnology The UniversitySheffieldU. K.

Personalised recommendations