Skip to main content
Log in

Entropic elastic processes in protein mechanisms. II. Simple (passive) and coupled (active) development of elastic forces

  • Review
  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

The first part of this review on entropic elastic processes in protein mechanisms (Urry, 1988) demonstrated with the polypentapeptide of elastin (Val1-Pro2-Gly3-Val4-Gly5)n that elastic structure develops as the result of an inverse temperature transition and that entropic elasticity is due to internal chain dynamics in a regular nonrandom structure. This demonstration is contrary to the pervasive perspective of entropic protein elasticity of the past three decades wherein a network of random chains has been considered the necessary structural consequence of the occurrence of dominantly entropic elastomeric force. That this is not the case provides a new opportunity for understanding the occurrence and role of entropic elastic processes in protein mechanisms. Entropic elastic processes are considered in two classes: passive and active. The development of elastomeric force on deformation is class I (passive) and the development of elastomeric force as the result of a chemical process shifting the temperature of a transition is class II (active). Examples of class I are elastin, the elastic filament of muscle, elastic force changes in enzyme catalysis resulting from binding processes and resulting in the straining of a scissile bond, and in the turning on and off of channels due to changes in transmembrane potential. Demonstration of the consequences of elastomeric force developing as the result of an inverse temperature transition are seen in elastin, where elastic recoil is lost on oxidation, i.e., on decreasing the hydrophobicity of the chain and shifting the temperature for the development of elastomeric force to temperatures greater than physiological. This is relevant in general to loss of elasticity on aging and more specifically to the development of pulmonary emphysema. Since random chain networks are not the products of inverse temperature transitions and the temperature at which an inverse temperature transition occurs depends on the hydrophobicity of the polypeptide chain, it now becomes possible to consider chemical processes for turning elastomeric force on and off by reversibly changing the hydrophobicity of the polypeptide chain. This is herein called mechanochemical coupling of the first kind; this is the chemical modulation of the temperature for the transition from a less-ordered less elastic state to a more-ordered more elastic state. In the usual considerations to date, development of elastomeric force is the result of a standard transition from a more-ordered less elastic state to a less-ordered more elastic state. When this is chemically modulated, it is herein called mechanochemical coupling of the second kind. For elastin and the polypentapeptide of elastin, since entropic elastomeric force results on formation of a regular nonrandom structure and thermal randomization of chains results in loss of elastic modulus to levels of limited use in protein mechanisms, consideration of regular spiral-like structures rather than ramdom chain networks or random coils are proposed for mechanochemical coupling of the second kind. Chemical processes to effect mechanochemical coupling in biological systems are most obviously phosphorylation-dephosphorylation and changes in calcium ion activity but also changes in pH. These issues are considered in the events attending parturition in muscle contraction and in cell motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron, B. B., and Gosline, J. M. (1980).Nature (Lond.) 287, 865–867.

    CAS  PubMed  Google Scholar 

  • Aaron, B. B., and Gosline, J. M. (1981).Biopolymers 20, 1247–1260.

    CAS  Google Scholar 

  • Aksoy, M. O., Williams, D., Sharkey, E. M., and Hartshorne, D. J. (1976).Biochem. Biophys. Res. Commun. 69, 35–41.

    CAS  PubMed  Google Scholar 

  • Barnes, C., Evans, J. A., and Lewis, T. J. (1985).J. Acoust. Soc. Am. 78(1), 6–11.

    CAS  PubMed  Google Scholar 

  • Barone, L. M., Faris, B., Chipman, S. D., Toselli, P., Oakes, B. W., and Franzblau, C. (1985).Biochem. Biophys. Acta 840, 245–254.

    CAS  PubMed  Google Scholar 

  • Berg, R. A., and Prockop, D. J. (1973).Biochem. Biophys. Res. Commun. 52, 115–120.

    CAS  PubMed  Google Scholar 

  • Bhatnagar, R. S., Rapaka, R. S., and Urry, D. W. (1978).FEBS Lett. 95, 61–64.

    CAS  PubMed  Google Scholar 

  • Braddon, S. A. (1978).Endocrinology 102, 1292–1299.

    CAS  PubMed  Google Scholar 

  • Calderón, J., Morett, E., and Mora, J. (1985).J. Bacteriol. 161, 807–809.

    PubMed  PubMed Central  Google Scholar 

  • Cerf, R. (1985).Biophys. J. 47, 751–756.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, K. C., Leung, W. P., Mok, H. Y., and Choy, C. L. (1985).Biochem. Biophys. Acta 830, 36–44.

    CAS  PubMed  Google Scholar 

  • Clark, J. G., Kuhn, C., and Mecham, R. P. (1983).Int. Rev. Connect. Tissue Res. 10, 249–331.

    CAS  PubMed  Google Scholar 

  • Cox, B. A., Starcher, B. C., and Urry, D. W. (1973).Biochim. Biophys. Acta 317, 209–213.

    CAS  PubMed  Google Scholar 

  • Cox, B. A., Starcher, B. C., and Urry, D. W. (1974).J. Biol. Chem. 249, 997–998.

    CAS  PubMed  Google Scholar 

  • Dabrowska, A., Aromatorio, D., Sherry, J. M. F., and Hartshorne, D. J. (1977).Biochem. Biophys. Res. Commun. 78, 1263–1272.

    CAS  PubMed  Google Scholar 

  • DeLozanne, A., and Spudich, J. A. (1987).Science 236, 1086.

    CAS  Google Scholar 

  • Eisenberg E., and Hill, T. L. (1985).Science 227, 999–1006.

    CAS  PubMed  Google Scholar 

  • Gavish, V. (1986). Inthe Fluctuating Enzyme (Welch, G. R., ed.), John Wiley & Sons, New York, pp. 263–339.

    Google Scholar 

  • Grant, E. H., Sheppard, R. T., and South, G. P. (1980).Dielectric Behavior of Biological Molecules in Solution, Clarendon Press, Oxford.

    Google Scholar 

  • Hall, K. (1947).J. Endocrinol. 5(3), 174–185.

    CAS  PubMed  Google Scholar 

  • Harrington, W. F. (1971).Proc. Natl. Acad. Sci. USA 68, 685–689.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington, W. F. (1979).Proc. Natl. Acad. Sci. USA 76, 5066–5070.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hatanaka, M., Sasaki, T., Kikuchi, T., and Murachi, T. (1985).Arch. Biochem. Biophys. 242, 557–562.

    CAS  PubMed  Google Scholar 

  • Hibberd, M. G., and Trentham, D. R. (1986).Annu. Rev. Biophys. Chem. 15, 119–161.

    CAS  Google Scholar 

  • Hisaw, F. L. (1926).Proc. Soc. Exp. Biol. Med. 23, 661–663.

    Google Scholar 

  • Hoeve, C. A. J., and Flory, P. J. (1958).J. Am. Chem. Soc. 80, 6523–6526.

    CAS  Google Scholar 

  • Hoeve, C. A. J., and Flory, P. J. (1974).Biopolymers 13, 677–686.

    CAS  PubMed  Google Scholar 

  • Huxley, A. F. (1974).J. Physiol. (Lond.) 243, 1–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huxley, A. F., and Simmons, R. M. (1971).Nature (Lond.) 233, 533–538.

    CAS  PubMed  Google Scholar 

  • Janoff, A. (1985).Am. Rev. Respir. Dis. 132, 417–433.

    CAS  PubMed  Google Scholar 

  • Judson, D. G., Pay, S., and Bhoola, K. D. (1980).J. Endochrinol. 87, 153–159.

    CAS  Google Scholar 

  • Katchalsky, A. (1951).J. Polymer Sci. 7, 393–412.

    CAS  Google Scholar 

  • Kemp, B. E., and Niall, H. D. (1984).Vitamins Hormones 41, 79–115.

    CAS  PubMed  Google Scholar 

  • Knecht, D. A., and Loomis, W. F. (1987).Science 236, 1081.

    CAS  PubMed  Google Scholar 

  • Koshland, D. E., Jr. (1963).Cold Spring Harbor Symp. 28, 473–482.

    Google Scholar 

  • Kramers, H. A. (1940).Physica 7, 284–304.

    CAS  Google Scholar 

  • Küber, D., Pyerin, W., Burow, E., and Kinzel, V. (1983).Proc. Natl. Acad. Sci. USA 80, 4021–4025.

    Google Scholar 

  • Kuhn, C., Yu, S.-Y., Chraplyvy, M., Linder, H. E., and Senior, R. M. (1976).Lab. Invest. 34, 372–380.

    CAS  PubMed  Google Scholar 

  • Liebman, M. N., Venanzi, C. A., and Weinstein, H. (1985).Biopolymers 24, 1721–1758.

    CAS  PubMed  Google Scholar 

  • Lipscomb, W. N. (1980).Proc. Natl. Acad. Sci. USA 77, 3875–3878.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lipscomb, W. N., Hartsuck, J. A., Reeke, G. N., Jr., Quioco, F. A., Bethge, P. H., Ludwig, M. L., Steitz, T. A., Muirhead, H., and Coppola, J. C. (1986).Brookhaven Symp. Biol. 21, 24–90.

    Google Scholar 

  • Long, M. M., King, V. J., Prasad, K. U., and Urry, D. W. (1987).Biochim. Biophys. Acta 928, 114–118.

    CAS  PubMed  Google Scholar 

  • Lumry, R., and Eyring, H. (1954).J. Phys. Chem. 58, 110–120.

    CAS  Google Scholar 

  • Lumry, R., and Gregory, R. G. (1986). Inthe Fluctuating Enzyme (Welch, G. R., ed.), John Wiley & Sons, New York, pp. 1–190.

    Google Scholar 

  • Magid, A., Ting-Beall, H. P., Carvell, M., Kontis, T., and Lucaveche, C. (1984). InContractile Mechanisms in Muscle (Pollack, G. H. and Sugi, H., eds.), Plenum Publishing Corporation, New York, pp. 307–328.

    Google Scholar 

  • Maruyama, K., Mabuchi, I., Matsubara, S., and Ohashi, K. (1976).Biochim. Biophys. Acta. 446, 321–324.

    CAS  PubMed  Google Scholar 

  • Maruyama, K., Matsubara, S., Natori, R., Nonomura, Y., Kimura, S., Ohashi, K., Murakami, F., Handa, S., and Eguchi, G. (1977).J. Biochem. 82, 317–337.

    CAS  PubMed  Google Scholar 

  • Maruyama, K., Itoh, Y., and Arisaka, F. (1986).Febs Lett. 202, 353–355.

    CAS  PubMed  Google Scholar 

  • McLachlan, A. D. (1984).Annu. Rev. Biophys. Bioeng. 13, 167–189.

    CAS  PubMed  Google Scholar 

  • Osman, M., Cantor, J. O., Roffman, S., Keller, St., Turnio, G. M., and Mandl, I. (1985a).Am. Rev. Respir. Dis. 132, 640–643.

    CAS  PubMed  Google Scholar 

  • Osman, M., Keller, S., Hosannah, Y., Cantor, J. O., Turino, G. M., and Mandl, I. (1985b).J. Lab Clin. Med. 105, 254–258.

    CAS  PubMed  Google Scholar 

  • Partridge, S. M., and Davis, H. F. (1955).Biochem. J. 61, 21–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Partridge, S. M., Davis, H. F., and Adair, G. S. (1955).Biochem. J. 61, 11–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peacock, E. R., Jr. (1984). InWound Repair, W. B. Saunders, Philadelphia, pp. 56–101.

    Google Scholar 

  • Pethig, R. (1979). InDielectric and Electronic Properties of Biological Materials, John Wiley & Sons, New York, pp. 100–149.

    Google Scholar 

  • Pringle, J. W. S. (1978).Proc. R. Soc. Lond. B 201, 107–130.

    CAS  PubMed  Google Scholar 

  • Prockop, D. J., Berg, R. A., Kivirikko, K. I. and Uitto, J. (1976). InBiochemistry of Collagen (Ramachandran, G. N., and Reddi, A. J., eds.), Plenum Publishing Corporation, New York, pp. 163–273.

    Google Scholar 

  • Ramachandran, G. N., Bansal, M., and Bhatnager, R. S. (1973).Biochim. Biophys. Acta 322, 166–171.

    CAS  PubMed  Google Scholar 

  • Ramachandran, G. N., Bansal, M., and Ramakrishnan, C.. (1975).Curr. Sci. 44(1), 1–3.

    CAS  Google Scholar 

  • Rees, D. C., Honzatko, R. B., and Lipscomb, W. N. (1980).Proc. Natl. Acad. Sci. USA 77, 3288–3291.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rees, D. C., Lewis, M., Honzatko, R. B., Lipscomb, W. N., and Hardman, K. D. (1981).Proc. Natl. Acad. Sci. USA 78, 3408–3412.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenbloom, J., Harsch, M., and Jiminez, S. (1973).Arch. Biochem. Biophys. 158, 478–484.

    CAS  PubMed  Google Scholar 

  • Rubinson, K. A. (1986).Biophys. Chem. 25, 57–72.

    CAS  PubMed  Google Scholar 

  • Rucker, R. B., and Tinker, D. (1977).Int. Rev. Exp. Pathol. 17, 1–47.

    CAS  PubMed  Google Scholar 

  • Sandberg, L. B., (1976).Int. Rev. Connect. Tissue Res. 7, 159–210.

    CAS  PubMed  Google Scholar 

  • Sandberg, L. B., Weissman, N., and Smith, D. W. (1969).Biochemistry 8, 2940–2945.

    CAS  PubMed  Google Scholar 

  • Sandberg, L. B., Soskel, N. T., and Leslie, J. B. (1981).N. Engl. J. Med. 304, 566–579.

    CAS  PubMed  Google Scholar 

  • Sandberg, L. B., Leslie, J. G., Leach, C. T., Torres, V. L., Smith, A. R., and Smith, D. W. (1985).Pathol. Biol. 33, 266–274.

    CAS  PubMed  Google Scholar 

  • Schneider, F., Müller-Landau, F., and Mayer, A. (1969).Biopolymers 8, 537–544.

    CAS  PubMed  Google Scholar 

  • Schwan, H. P. (1974). InBiological Effects and Health Hazards of Microwave Radiation (Czerski, P., ed.), Polish Medical Publishers, Warsaw, pp. 152–159.

    Google Scholar 

  • Senior, R. M., Griffin, G. L., Mecham, R. P., Wrenn, D. S., Prasad, K. U., and Urry, D. W. (1984).J. Cell Biol. 99, 870–874.

    CAS  PubMed  Google Scholar 

  • Skolnick, J. (1987).Biophys. J. 51, 227–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, D. W., Weissman, N., and Carnes, W. H. (1968).Biochem. Biophys. Res. Commun. 31, 309–315.

    CAS  PubMed  Google Scholar 

  • Smith, D. W., Brown, D. M., and Carnes, W. H. (1972).J. Biol. Chem. 247, 2427–2432.

    CAS  PubMed  Google Scholar 

  • Snider, G. L. (1984).Schweiz, Med. Wochenschr. 114, 898–906.

    CAS  PubMed  Google Scholar 

  • Solomon, F. (1987).Science 236, 1043–1044.

    CAS  PubMed  Google Scholar 

  • Somerville, L. L., and Wang, K. (1983).Biophys. J. 41, 96a.

  • Sparks, J. W., and Brautigan, D. L. (1986).Int. J. Biochem. 18, 497–504.

    CAS  PubMed  Google Scholar 

  • Starcher, B. C., Saccomani, G. and Urry, D. W. (1973).Biochim. Biophys. Acta 310, 481–486.

    CAS  Google Scholar 

  • Stone, P. J. (1983).Clin. Chest Med. 4, 405–412.

    CAS  PubMed  Google Scholar 

  • Trinick, J., Knight, P., and Whiting, A. (1984).J. Mol. Biol. 180, 331–356.

    CAS  PubMed  Google Scholar 

  • Trombitas, K., and Tigyi-Sebes, A. (1974).Acta Biochim. Biophys. Acad. Sci. Hung. 10, 83–93.

    Google Scholar 

  • Tsong, T. Y., Karr, T., and Harrington, W. F. (1979).Proc. Natl. Acad. Sci. USA 76, 1109–1113.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsong, T. Y., Himmelfarb, S., and Harrington, W. F. (1983).J. Mol. Biol. 164, 431–450.

    CAS  PubMed  Google Scholar 

  • Uitto, J., Hoffman, J.-P., and Prockop, D. M. (1976).Arch. Biochem. Biophys. 173, 187–200.

    CAS  PubMed  Google Scholar 

  • Urry, D. W. (1968).Annu. Rev. Phys. Chem. 19, 477–530.

    CAS  Google Scholar 

  • Urry, D. W. (1988).J. Protein Chem. 7, 1–34.

    CAS  PubMed  Google Scholar 

  • Urry, D. W., Sugano, H., Prasad, K. U., Long, M. M., and Bhatnager, R. S. (1979).Biochem. Biophys. Res. Commun. 90, 194–198.

    CAS  PubMed  Google Scholar 

  • Urry, D. W., Henze, R., Redington, P., Long, M. M., and Prasad, K. U. (1985).Biochem. Biophys. Res. Commun. 128, 1000–1006.

    CAS  PubMed  Google Scholar 

  • Urry, D. W., Haynes, B., and Harris, R. D. (1986).Biochem Biophys. Res. Commun. 141, 749–755.

    CAS  PubMed  Google Scholar 

  • Volpin, D., Urry, D. W., Pasquali-Ronchetti, I., and Gotte, L. (1976).Micron 7, 193–198.

    Google Scholar 

  • Walsh, M. P., Bridenbaugh, R., Kerrick, W. G., and Hartshorne, D. J. (1983).Fed. Proc. Fed. Am. Soc. Exp. Biol. 42, 45–50.

    CAS  Google Scholar 

  • Wang, K. (1985). InCell and Muscle Motility, Vol. 6 (Shay, J. W., ed.), Plenum Publishing Corporation New York, pp. 315–369.

    Google Scholar 

  • Wang, K., and Ramirez-Mitchell, R. (1979).J. Cell Biol. 83, 389a.

    Google Scholar 

  • Wang, K., Ramirez-Mitchell, R., and Palter, D. (1984).Proc. Natl. Acad. Sci. USA 81, 2685–3689.

    Google Scholar 

  • Wang, K., McClure, J., and Tu, A. (1979).Proc. Natl. Acad. Sci. USA 76, 2698–3702.

    Google Scholar 

  • Weiss, G. (1984).Annu. Rev. Physiol. 46, 43–52.

    CAS  PubMed  Google Scholar 

  • Yanagida, T., Arata, T., and Oosawa, F. (1985).Nature (Lond.) 316, 366–369.

    CAS  PubMed  Google Scholar 

  • Yeh, H., Ornstein-Goldstein, N., Indik, Z., Sheppard, P., Anderson, N., Rosenbloom, J. C., Cicila, G., Yoon, K., and Rosenbloom, J. (1987).Collagen and Related Research 7, 235–247.

    CAS  PubMed  Google Scholar 

  • Zana, R., and Tondre, C. (1972).J. Phys. Chem. 76, 1737–1743.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urry, D.W. Entropic elastic processes in protein mechanisms. II. Simple (passive) and coupled (active) development of elastic forces. J Protein Chem 7, 81–114 (1988). https://doi.org/10.1007/BF01025240

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025240

Key words

Navigation