Aquatic Geochemistry

, Volume 1, Issue 1, pp 53–88 | Cite as

The chemistry of the anoxic waters in the Framvaren Fjord, Norway

  • Wensheng Yao
  • Frank J. Millero


In the summer of 1993, a number of chemical parameters (H2S, O2, pH, TA, TCO2, NH 4 + , PO 4 3− , SiO2, Mn2+ and Fe2+) were measured in the Framvaren Fjord, a permanently super-anoxic fjord in southern Norway. The extremely steep gradient of sulfide near the interface suggests that other than downward flux of oxygen, three other possible oxidants, particulate manganese and iron oxides, phototrophic sulfur oxidation bacteria and horizontally transported oxygen account for the oxidation of the upward flux of H2S. Water intrusion through the sill accounts for the temperature inflection above the interface, which, together with internal waves (Stigerbrandt and Molvaer, 1988), may cause fluctuations of the depth of interface. Significant gradients of hydrographic properties and chemical species between 80–100 m suggest that there is a “second interface” at about 90 m that separates the deep and older bottom waters. A stoichiometric model is applied to examine the biogeochemical cycles of S, C, N and P in the Framvaren. High C:S, C:N and C:P ratios are found while the nutrients (N, P) have Redfield ratio. Based on the C:N:P ratio of 155:16:1 in organic matter, about 30% of sulfide produced by sulfate reduction is estimated to be removed by processes such as oxidation, formation of FeS2, degassing and incorporation into organic matter. The rates of oxidation of H2S by Mn and Fe oxides in the water near the interface were slightly faster than the observed values in the laboratory, probably due to the presence of bacteria.

Key words

Anoxic waters the Framvaren fjord 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizenshtat, Z., Stoler, A., and Nielsen, H., (1983) The geochemical sulfur enrichment of recent organic matter by polysulfides in the solar-lake. InAdvances in Organic Geochemistry 1981 (ed. M. Bjoroy), Wiley, Chichester, pp. 279–288.Google Scholar
  2. Anderson, L. G., Dyrssen, D., and Hall, P. O. J. (1988) On the sulfur chemistry of a super-anoxic fjord, Framvaren, South Norway.Mar. Chem. 23, 283–293.Google Scholar
  3. Anderson, L. G., Dyrssen, D., and Skei, J. (1987) Formation of chemogenic calcite in super-anoxic seawater — Framvaren southern Norway.Mar. Chem. 20, 361–176.Google Scholar
  4. Bates, R. G. and Acree, S. F. (1943) pH values of certain phosphate chloride mixtures and the second dissociation constant of phosphoric acid from 0°C to 60°C.J. Res. Natl. Bur. Stand. 30, 129–155.Google Scholar
  5. Bates, R. G. and Pinching, G. D. (1949) Acidic dissociation constant of ammonium ion at 0 to 50°C, and the base strength of ammonia.J. Res. Natl. Bur. Stand. 42, 419–430.Google Scholar
  6. Breland, J. N. and Byrne, R. H. (1993) Spectrophotometric determination of the total alkalinity of sea water using bromocresol green.Deep-Sea Res. 40, 629–641.Google Scholar
  7. Brewer, P. G. and Spencer, D. W. (1971) Colorimetric determination of manganese in anoxic waters.Limnol. Oceanogr. 16, 107–110.Google Scholar
  8. Brewer, P. G. and Murray, J. M. (1973) Carbon, nitrogen and phosphorus in the Black Sea.Deep-Sea Res. 20, 803–818.Google Scholar
  9. Burdige, D. J. and Nealson, K. H. (1986) Chemical and microbiological studies of sulfide-mediated manganese reduction.Geomicrobiol. J. 4, 361–387.Google Scholar
  10. Busey, R. H. and Mesmer, R. E. (1977) Ionization equilibria of silicic acid and polysilicate formation in aqueous sodium chloride solutions to 300°C.Inorg. Chem. 1, 2444–2450.Google Scholar
  11. Carpenter, J. H. (1965) The Chesapeake Bay Institute Technique for the Winkler dissolved oxygen method.Limnol. Oceanogr. 10, 141–143.Google Scholar
  12. Chen, K. Y. and Morris, J. C. (1972) Kinetics of oxidation of aqueous sulfide by O2.Environ. Sci. Technol. 6, 529–537.Google Scholar
  13. Cline, I. D. (1969) Spectrophotometric determination of hydrogen sulfide in nature waters.Limnol. Oceanogr. 14, 454–458.Google Scholar
  14. Craig, H., Broecker, W. S., and Spencer, D. (1981)GEOSECS Pacific Expedition, Sections and Profiles. U.S. Government Printing Office, Washington, D.C., Vol. 251.Google Scholar
  15. Crosby, S. A., Glasson, D. R., Cuttler, A. H., Butler, I., Turner, D. R., Whitfield, M., and Millward, S. E. (1983) Surface areas and porosities of Fe(III) and Fe(II)-derived oxyhydroxides.Environ. Sci. Technol. 17, 709–713.Google Scholar
  16. Culberson, C. and Pytkowicz, R. M. (1973) Ionization of water in seawater.Mar. Chem. 1, 309–316.Google Scholar
  17. Dickson, A. G. and Riley, J. P. (1979a) The estimation of acid dissociation constants in seawater media from potentiometric titrations with strong base. I. The ionic product of water —Kw.Mar. Chem. 7, 89–99.Google Scholar
  18. Dickson, A. G. and Riley, J. P. (1979b) The estimation of acid dissociation constants in seawater media from potentiometric titrations with strong base. II. The dissociation of phosphoric acid.Mar. Chem. 7, 101–109.Google Scholar
  19. Dickson, A. G. (1981) An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total CO2 from titration data.Deep-Sea Res. 28, 609–623.Google Scholar
  20. Dickson, A. G. (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K.Deep-Sea Res. 37, 755–766.Google Scholar
  21. Dickson, A. G. (1993) pH buffers for sea water media based on the total hydrogen ion concentration scales.Deep-Sea Res. 40, 107–118.Google Scholar
  22. Dyrssen, D., Hall, P., Haraldsson, C., Iverfeldt, A., and Westerlund, S. (1984) Trace metal concentrations in the anoxic bottom water of Framvaren. InComplexation of Trace Metals in Natural Waters (eds. C. J. M. Kramer and J. C. Duinker), Martinus Nijhoff/Dr W. Junk Publisher, The Hague/Boston/Lancaster, pp. 239–245.Google Scholar
  23. Dyrssen, D. (1985) Some calculations on Black Sea chemical data.Chem. Scr. 5, 199–205.Google Scholar
  24. Dyrssen, D. (11986) Stagnant sulphidic basin waters.Sc. Total Env. 58, 161–173.Google Scholar
  25. Dyrssen, D. (1987)A Man-Made Sulfide Producer. ACS National Meeting. Vol. 27, No. 2. Division of Environmental Chemistry, American Chemical Society, Washington, pp. 93–95.Google Scholar
  26. Dyrssen, D. (1989) Biogenic sulfur in two different marine environments.Mar. Chem. 28, 241–249.Google Scholar
  27. Friederich, G. E., Codispoti, L. A., and Sakamoto, C. M. (1990) Bottle and pumpcast data from the 1988 Black Sea expedition. Technical Report No. 90–3. Monterey Bay Aquarium Research Institute.Google Scholar
  28. Goyet, C., Bradshaw, A. L., and Brewer, P. G. (1991) The carbonate system in the Black Sea.Deep-Sea Res. 38, (Suppl.): S1049-S1068.Google Scholar
  29. Grasshoff, K. (1975) The hydrochemistry of landlocked basins and fjords. InChemical Oceanography (eds. J. P. Riley and G. Skirrow), Vol. 2, Academic Press, London, pp. 611–645.Google Scholar
  30. Hansson, I. (1973) A new set of acidity constants for carbonic acid and boric acid in seawater.Deep-Sea Res. 20, 461–478.Google Scholar
  31. Haraldsson, C. and Westerlund, S. (1988) Trace metals in the water columns of the Black Sea and Framvaren Fjord.Mar. Chem. 23, 417–424.Google Scholar
  32. Hecky, R. E., Campbell, P., and Hendzel, L. L. (1993) The stoichiometry of carbon, nitrogen, and phosphorus in particulate matter of lakes and oceans.Limnol. Oceanogr. 38, 709–724.Google Scholar
  33. Ingri, N. (1959) Equilibrium studies of polyanions. IV. Silicate ions in NaCl medium.Acta Chem. Scand. 13, 758–770.Google Scholar
  34. Jacobs, L., Emerson S., and Skei, J. (1985) Partitioning and transport of metals across the O2/H2S interface in a permanently anoxic basin: Framvaren Fjord, Norway.Geochim. Cosmochim. Acta 49, 1433–1444.Google Scholar
  35. Jannasch, H. W. (1991) Microbial processes in the Black Sea water column and top sediment: An overview. InBlack Sea Oceanography (eds. E. Izdar and J. W. Murray), Kluwer, Dordrecht, pp. 271–286.Google Scholar
  36. Johansson, O. and Wedborg, M. (1979) Stability constants of phosphoric acid in seawater of 5–40‰ salinity and temperatures of 5–25°C.Mar. Chem. 8, 57–69.Google Scholar
  37. Johansson, O. and Wedborg, M. (1980) The ammonia-ammonium equilibrium in sea-water at temperatures between 5°C and 25°C.J. Sol. Chem. 9, 37–44.Google Scholar
  38. Johnson, K. M., King, A. E., and McN. Sieburth, J. (1985) Coulometric TCO2 analyses for marine studies: an introduction.Mar. Chem. 16, 61–82.Google Scholar
  39. Jørgensen, B. B., Fossing, H., Wirsen, C. O., and Jannasch, H. W. (1991) Sulfide oxidation in the anoxic Black Sea chemocline.Deep-Sea Res. 38, (Suppl.), S1083-S1103.Google Scholar
  40. Kemp, S. (1990) Alkalinity: The link between anaerobic basins and shallow water carbonates?Naturwissenschaffer 7, 426–427.Google Scholar
  41. Khoo, K. H., Culberson, C. H., and Bates, R. G. (1977) Thermodynamics of ammonium ion in seawater from 5 to 40°C.J. Sol. Chem. 6, 281–290.Google Scholar
  42. Krein, E. B. and Aizenshtat, Z. (1994) The formation of isoprenoid sulfur compounds during diagenesis: Simulated sulfur incorporation and thermal transformation.Org. Geochem. 21, 1015–1025.Google Scholar
  43. Krom, M. D. and Berner, R. A. (1981) The diagenesis of phosphorus in a near shore marine sediment.Geochim. Cosmochim. Acta 4, 207–216.Google Scholar
  44. Landing, W. M. and Westerlund, S. (1988) The solution chemistry of iron (II) in Framvaren Fjord.Mar. Chem. 23, 329–343.Google Scholar
  45. Little, K. (1971) Practical analysis of high purity chemicals — V. Precision silver chloride gravimetry.Talanta 18, 927–933.Google Scholar
  46. Luther III, G. W., Church, T. M., and Powell, D. (1991) Sulfur speciation and sulfide oxidation in the water column of the Black Sea.Deep-Sea Res. 38 (Suppl.), S1121–1137.Google Scholar
  47. Martens, C. S. (1993) Recycling efficiencies of organic carbon, nitrogen, phosphorus and reduced sulfur in rapidly depositing coastal sediments. InInteractions of C, N, P and S Biogeochemical Cycles and Global Change (eds. R. Wollast, F. T. Mackenzie, and L. Chou), Springer-Verlag, Berlin, Heidelberg, pp. 379–400.Google Scholar
  48. Mckee, B. A. (1993) Biogeochemical Investigations of Framvaren Fjord. Preliminary Data Report June 4–9 1993, Louisiana Universities Marine Center.Google Scholar
  49. Mckee, B. A. and Todd, J. F. (1993) Uranium behavior in a permanently anoxic fjord: Microbial control?Limnol. Oceanogr. 38, 408–414.Google Scholar
  50. Millero, F. J. (1979) The thermodynamics of the carbonic acid system in seawater.Geochim. Cosmochim. Acta 43, 1651–1661.Google Scholar
  51. Millero, F. J., Plese, T., and Fernandez, M. (1988) The dissociation of hydrogen sulfide in sea-water.Limnol. Oceanogr. 33, 269–274.Google Scholar
  52. Millero, F. J. (1991) The oxidation of H2S in Framvaren Fjord.Limnol. Oceanogr. 36, 1007–1014.Google Scholar
  53. Millero, F. J., Zhang, J.-Z., Fiol, S., Sototlongo, S., Roy, R., Lee, K., and Mane, S. (1993a) The use of buffers to measure the pH of seawater.Mar. Chem. 44, 143–152.Google Scholar
  54. Millero, F. J., Zhang, J.-Z., Lee, K., and Campbell, D. M. (1993b) Titration alkalinity of seawater.Mar. Chem. 44, 153–165.Google Scholar
  55. Mopper, K. and Kieber, D. J. (1991) Distribution and biological turnover of dissolved organic compounds in the water column of the Black Sea.Deep-Sea Res. 38 (Suppl.), S1021–1047.Google Scholar
  56. Mucci, A. (1983) The solubility of calcite and aragonite in seawater at various salinities, temperatures and one atmosphere total pressure.Amer. J. Sci. 283, 780–799.Google Scholar
  57. Murray, J. M. (1974) The surface chemistry of hydrous manganese dioxide.J. Colloid. Interface Sci. 46, 357–371.Google Scholar
  58. Murray, J. M. and Izdar, E. (1989) The 1988 Black Sea oceanography expedition: Overview and new discoveries.Oceanography 2, 15–21.Google Scholar
  59. Murray, J. M., Top, Z., and Ozsoy, E. (1991) Hydrographic properties and ventilation of the Black Sea.Deep-Sea Res. 38, (Suppl.), S663-S689.Google Scholar
  60. Murray, J. M., Codispoti, L. A., and Friederich, G. E. (1994) Redox environments: The suboxic zone in the Black Sea. InAquatic Chemistry (eds. C. P. Huang, C. R. O'Melia, and J. J. Morgan), American Chemistry Society, pp. 000–000.Google Scholar
  61. Naes, K., Skei, J. M., and Wassmann, P. (1988) Total particulate and organic fluxes in anoxic Framvaren waters.Mar. Chem. 23, 257–268.Google Scholar
  62. Parsons, T. R., Maita, Y., Lalli, C. M. (1984)A Manual of Chemical and Biological Methods for Sea-Water Analysis. Pergamon Press, Oxford.Google Scholar
  63. Peng, T.-H. and Broecker, W. S. (1987) C/P ratios in marine detritus.Global Biogeochem. Cycles 1, 155–161.Google Scholar
  64. Redfield, A. C., Ketchum, B. H., and Richards, F. A. (1963) The influence of organisms on the composition of seawater. InThe Sea, Vol. 2 (ed. M. N. Hill), Interscience, New York, pp. 26–77.Google Scholar
  65. Richards, F. A. (1965) Anoxic basins and fjords. In:Chemical Oceanography, Vol. 1, (ed. J. P. Riley and G. Skirrow), Academic Press, New York, pp. 611–645.Google Scholar
  66. Roy, R. N., Roy, L. N., Vogel, K. M., Porter-Moore, C., Pearson, T., Good, C. E., Millero, F. J., and Campbell, D. M. (1993) The dissociation constants of carbonic acid in seawater in salinities 5 to 45 and temperature 0 to 45°C.Mar. Chem. 44, 249–267.Google Scholar
  67. Schwertmann, U. and Cornell, R. M. (1991)Iron Oxides in the Laboratory. Weinhein, New York.Google Scholar
  68. Shaffer, G. (1986) Phosphate pumps and shuttles in the Black Sea.Nature 321, 515–517.Google Scholar
  69. Skei, J. M. (1983) Geochemical and sedimentological consideration of a permanent anoxic fjord — Framvaren, South Norway.Sediment Geol. 36, 132–145.Google Scholar
  70. Skei, J. M. (1986) The biogeochemistry of Framvaren. A permanent Anoxic Fjord Near Farsund, South Norway. Data Report 1931–1985, Norwegian Institute for Water Research.Google Scholar
  71. Skei, J. M. (1988a) Framvaren — Environmental setting.Mar. Chem. 23, 209–218.Google Scholar
  72. Skei, J. M. (1988b) Formation of framboidal iron sulfide in the water of a permanently anoxic fjord — Framvaren, south Norway.Mar. Chem. 23, 345–352.Google Scholar
  73. Smethie Jr., W. M. (1987) Nutrient regeneration and denitrification in low oxygen fjords.Deep-Sea Res. 34, 983–1006.Google Scholar
  74. Sørensen, K. (1988) The distribution and biomass of phytoplankton and phototrophic bacteria in Framvaren, a permanently anoxic fjord in Norway.Mar. Chem. 23, 229–241.Google Scholar
  75. Spencer, D., Broecker, W. S., Craig, H., and Weiss, R. F. (1982)GEOSECS Indian Ocean Expedition, Sections and Profiles. U.S. Government Printing Office, Washington, D.C. Vol. 2, 198 pp.Google Scholar
  76. Stigebrandt, A. and Molvaer, J. (1988) On the water exchange of Framvaren.Mar. Chem. 23, 219–228.Google Scholar
  77. Takahashi, T., Broecker, W., and Langer, S. (1985) Redfield ratio based on chemical data from isopycnal surfaces.J. Geophys. Res. 90, 6907–6924.Google Scholar
  78. Tebo, B. M. and Nealson, K. H. (1984) Microbial mediation of Mn(II) and Co(II) precipitation at the O2/H2S interfaces in two anoxic fjords.Limnol. Oceanogr. 29, 1247–1258.Google Scholar
  79. Vairavamurthy, A., Mopper, K., and Taylor, B. F. (1992) Occurrence of particle-bound polysulfides and significance of their reaction with organic matters in marine sediments.Geophys. Res. Lett. 19, 2043–2046.Google Scholar
  80. Wetzel, R. G. (1975)Limnology. Saunders, Philadelphia.Google Scholar
  81. Yao, W. and Millero, F. J. (1993) The rate of sulfide oxidation by δMnO2 in seawater.Geochim. Cosmochim. Acta 57, 3359–3365.Google Scholar
  82. Yao, W. and Millero, F. J. (1994) Oxidation of hydrogen sulfide by Mn(IV) and Fe(III) (hydr)oxides in seawater. InGeochemical Transformation of Sedimentary Sulfur (eds. M. A. Vairavamurthy and M. A. A. Schoonen), ACS Press, Washington D.C., submitted.Google Scholar
  83. Zhang, J.-Z. and Millero, F. J. (1993) The chemistry of the anoxic waters in the Cariaco Trench.Deep-Sea Res. 40, 1023–1041.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Wensheng Yao
    • 1
  • Frank J. Millero
    • 1
  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA

Personalised recommendations