Advertisement

Journal of Protein Chemistry

, Volume 11, Issue 2, pp 165–169 | Cite as

Structural analysis of seminal and serum human transferrin by second derivative spectrometry and fluorescence measurements

  • Gabriele D'Andrea
  • Giovanni Maurizi
  • Anna M. D'Alessandro
  • M. Luisa Salucci
  • Angela Impagnatiello
  • M. Antonietta Saletti
  • Arduino Oratore
Article

Abstract

Denaturation of human seminal transferrin (HSmT) compared with human serum transferrin (HSrT) was followed to check structural differences between these two proteins. Second derivative UV spectroscopy indicated that treatment with 6 M guanidine hydrochloride (Gnd·HCl) induced greater structural changes in HSrT than in HSmT and, in particular; (i) the exposure value of tyrosinyl residues was almost 2.5-fold higher in native HSmT than in native HSrT; and (ii) a much more pronounced movement of tryptophanyl residues toward a higher polar environment could be noticed in HSrT after incubation with denaturating agent. Fluorescence measurements showed that: (i) a shift of the maximum emission wavelength of HSmT occurred (maximum emission was centered at 333 nm instead of 323 nm as for HSrT; excitation = 280 nm); (ii) the intrinsic tryptophan fluorescence intensity of HSmT increased after 36 hr in the range of 1.5–4.0 M of denaturant, whereas an opposite behavior was found for HSrT in the range 0.0–2.0 M; and (iii) the wavelength maximum of fluorescence emission changed in a biphasic manner for HSrT and, conversely, under the same experimental conditions, HSmT gave a linear and parallel increase of fluorescence emission after 1 and 36 hr. We can conclude that this different behavior of HSmT with respect to HSrT might be due mainly to the fact that both the number and the exposure of tyrosinyl and tryptophanyl residues are different. Lately, these effects are discussed in relationship with the fact that HSmT contains less than half disulphide bridges than HSrT.

Key words

Human seminal transferrin human serum transferrin second derivative spectroscopy fluorescence analysis denaturation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackland, C. E., Berndt, W. G., Frezza, J. E., Landgraf, B. E., Pritchard, K. W., and Ciardelli, T. L. (1991).J. Chromatogr. 540, 187–198.Google Scholar
  2. Aisen, P., and Listowsky, I. (1980).Annu. Rev. Biochem. 49, 357–397.Google Scholar
  3. Anderson, B. F., Baker, H. M., Dodson, E. J., Norris, G. E., Rumball, S. V., Waters, J. M., and Baker, E. N. (1987).Proc. Natl. Acad. Sci. USA 84, 1769–1773.Google Scholar
  4. Brems, N. D., Plaisted, S. M., Havel, A., and Tomich, C. C. (1988).Proc. Natl. Acad. Sci. USA 85, 3367–3371.Google Scholar
  5. Brock, J. H., and Mainon-Fowler, T. (1983).Immunol. Today 4, 347–351.Google Scholar
  6. Chan, S. Y. W., Loh, T. T., Wang, C., and Tang, L. C. H. (1986).Fertil. Steril. 45, 687–691.Google Scholar
  7. Consler, T. C., and Lee, J. C. (1988).J. Biol. Chem. 263, 2787–2793.Google Scholar
  8. D'Alessandro, A. M., D'Andrea, G., and Oratore, A. (1988).Electrophoresis 9, 80–83.Google Scholar
  9. D'Alessandro, A. M., D'Andrea, G., Van Beeumen, J., Franceshini, N., Maurizi, G., Perilli, G., and Oratore, A. (1991).Cell. Mol. Biol. 37, 445–453.Google Scholar
  10. Evans, R. W., and Williams, J. (1980).Biochem. J. 189, 541–546.Google Scholar
  11. Havel, H. A., Kauffman, E. W., Plaisted, S. M., and Brems, D. N. (1986).Biochemistry 25, 6533–6538.Google Scholar
  12. Holmes, S. D., Lipshulz, L. I., and Smith, R. G. (1982).Fertil. Steril. 38, 600–604.Google Scholar
  13. Ragone, R., Colonna, G., Balestrieri, C., Servillo, L., and Irace, G. (1984).Biochemistry 23, 1871–1875.Google Scholar
  14. MacGillivray, R. T. A., Mendes, E., Shewale, J. G., Sinha, S. K., Lineback-Zins, J., and Brew, K. (1983).J. Biol. Chem. 258, 3543–3553.Google Scholar
  15. Oratore, A., D'Alessandro, A. M., and Santiemma, V. (1987).Cell. Mol. Biol. 33, 593–599.Google Scholar
  16. Saito, Y., and Wada, A. (1983).Biopolymers 22, 2123–2132.Google Scholar
  17. Singh, B. R., Wasacz, F. M., Strand, S., Jakobsen, R. J., and DasGupta, B. R. (1990).J. Prot. Chem. 9, 705–713.Google Scholar
  18. Skinner, M. K., and Griswold, M. D. (1980).J. Biol. Chem. 255, 9523–9525.Google Scholar
  19. Skinner, M. K., Cosand, W. L., and Griswold, M. D. (1984).Biochem. J. 218, 313–320.Google Scholar
  20. Weir, M. P., Chaplin, M. A., Wallace, D. M., Dykes, C. W., and Hobden, A. N. (1988).Biochemistry 27, 6883–6892.Google Scholar
  21. Williams, J. (1968).Biochem. J. 108, 57–67.Google Scholar
  22. Williams, J., Elleman, T. C., Kingston, I. B., Wilkins, A. G., and Kühn, K. A. (1982).Eur. J. Biochem. 122, 297–303.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Gabriele D'Andrea
    • 1
  • Giovanni Maurizi
    • 1
  • Anna M. D'Alessandro
    • 1
  • M. Luisa Salucci
    • 1
  • Angela Impagnatiello
    • 1
  • M. Antonietta Saletti
    • 1
  • Arduino Oratore
    • 1
  1. 1.Department of Biomedical Sciences and Technologies and BiometricsUniversity of L'AquilaL'AquilaItaly

Personalised recommendations