Advertisement

Journal of Protein Chemistry

, Volume 11, Issue 2, pp 139–155 | Cite as

Structural domains of phytochrome deduced from homologies in amino acid sequences

  • Marek Romanowski
  • Pill-Soon Song
Article

Abstract

A method of semiempirical identification of structural domains is proposed. The procedure is based on the comparison of amino acid sequences in groups of homologous proteins. This approach was tested using 32 known protein sequences from different cytochromeb5, cytochromec, lysozyme, hemoglobin, and myoglobin proteins. The method presented was able to identify all structural domains of these reference proteins. A consensus secondary structure provided information on structural content of these domains predicting correctly 21 of 23 (91%) of α-helices. We applied this method to six homologous phytochrome sequences fromAvena, Arabadopsis, Cucurbita, Maize, Oryza, andPisum. Some of the identified domains can be assigned to the known tertiary structure categories. For example, an α/β domain is localized in the region known to stabilize the phytochrome chromophore in the red light absorbing form (Pr). One α-helical and one α/β domains are localized in regions important for the chromophore stabilization in the far-red absorbing form (Pfr). From an analysis of noncovalent interaction patterns in another domain it is proposed that a phytochrome dimer contact involves two segments localized between residues 730 and 821 (using numbering of aligned sequences). Also, a possible antiparallel β-sheet structure of this region has been suggested. According to this model, the long axis of the interacting structures is perpendicular to a twofold symmetry axis of the phytochrome dimer.

Key words

Phytochrome protein homology protein domains peptide conformation signal transduction photomorphogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argos, P., and Rao, M. (1986).Methods Enzymol. 130, 185–207.Google Scholar
  2. Argos, P., Hanei, M., Wilson, J. M., and Kelly, W. N. (1983),J. Biol. Chem. 258, 6450–6457.Google Scholar
  3. Bechet, J. J., and Houadjeto, M. (1989).Biochim. Biophys. Acta 996, 199–208.Google Scholar
  4. Busetta, B., and Hospital, M. (1982).Biochim. Biophys. Acta 701, 111–118.Google Scholar
  5. Chai, Y.-G., Song, P.-S., Cordonier, M. M., and Pratt, L. H. (1987).Biochemistry 26, 4947–4952.Google Scholar
  6. Chou, P. Y. (1989). InPrediction of Protein Structure and the Principles of Protein Conformation (Fasman, G. D., ed.), Plenum Press, New York, pp. 549–586.Google Scholar
  7. Chou, P. Y., and Fasman, G. (1978).Adv. Enzymol. 47, 45–148.Google Scholar
  8. Christensen, A. H., and Quail, P. H. (1989).Gene 85, 381–390.Google Scholar
  9. Dayhoff, M. O. (1972).Atlas of Protein Sequence and Structure, National Biochemical Research Foundation, Washington, D.C.Google Scholar
  10. Deleage, G., and Roux, B. (1987).Protein Eng. 1, 289–294.Google Scholar
  11. Dickerson, R. E. (1971).J. Mol. Biol. 57, 1–15.Google Scholar
  12. Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A., and Margoliash, E. (1971).J. Biol. Chem. 246, 1511–1533.Google Scholar
  13. Eisenberg, D., Schwartz, E., Komaromy, M., and Wall, R. (1984).J. Mol. Biol. 179, 125–142.Google Scholar
  14. Fermi, G., and Perutz, M. F. (1981). InAtlas of Molecular Structures in Biology (Philips, D.C., and Richards, F. M., eds.), Clarendon Press, Oxford.Google Scholar
  15. Furuya, M. (1989).Adv. Biophys. 25, 133–167.Google Scholar
  16. Gilbert, W. (1985).Science 228, 823–824.Google Scholar
  17. Grimm, R., Eckerskorn, C., Lottspeich, F., Zenger, C., and Rüdiger, W. (1988).Planta 174, 396–401.Google Scholar
  18. Hahn, T. R., Chae, Q., and Song, P.-S. (1984).Biochemistry 23, 1219–1224.Google Scholar
  19. Hartre, R. A., and Rupley, J. A. (1968).J. Biol. Chem. 243, 1663–1669.Google Scholar
  20. Hershey, H. P., Baker, R. F., Idler, J. L., Lissemore, K. B. and Quail, P. H. (1985).Nucleic Acids Res. 13, 8543–8559.Google Scholar
  21. Huber, R., and Bennet, W. S. (1983).Biopolymers 22, 261–279.Google Scholar
  22. Hulmes, D. J. S., Miller, A., Parry, D. A. D., Piez, K. A., and Woodhead-Galloway, J. (1973).J. Mol. Biol. 79, 137–148.Google Scholar
  23. Janin, J., and Wodak, S. J. (1983).Prog. Biophys. Molec. Biol. 42, 21–78.Google Scholar
  24. Jones, A. M., and Erickson, H. P. (1989).Photochem. Photobiol. 49, 479–483.Google Scholar
  25. Jones, A. M., and Quail, P. H. (1986).Biochemistry 25, 2987–2995.Google Scholar
  26. Jones, A. M., and Quail, P. H. (1989).Planta 178, 147–156.Google Scholar
  27. Jones, A. M., Viestra, R. D., Daniels, S. M., and Quail, P. H. (1985).Planta 164, 501–506.Google Scholar
  28. Joseph, D., Petsko, G. A., and Karplus, M. (1990).Science 249, 1425–1428.Google Scholar
  29. Kay, S. A., Keith, B., Shinozaki, K., and Chua, N. H. (1989).Nucleic Acids Res. 17, 2865–2866.Google Scholar
  30. Kubota, Y., Nishikawa, K., Takahashi, S., and Ooi, T. (1982).Biochim. Biophys. Acta 701, 242–252.Google Scholar
  31. Lagarias, J. C., and Lagarias, D. M. (1989).Proc. Natl. Acad. Sci. U.S.A. 86, 5778–5780.Google Scholar
  32. Lagarias, J. C., and Mercurio, F. M. (1985).J. Biol. Chem. 260, 2415–2423.Google Scholar
  33. Lagarias, J. C., Wong, Y. S., Berkelman, T. R., Kidd, D. G., and McMichael, R. W., Jr. (1987). InPhytochrome and Photoregulation in Plants (Furuya, M., ed.), Academic Press, Tokyo, pp. 51–62.Google Scholar
  34. Lesk, A. M., and Clothia, C. (1984).J. Mol. Biol. 174, 175–191.Google Scholar
  35. Lifson, S., and Sander, C. (1980).J. Mol. Biol. 139, 627–639.Google Scholar
  36. Miranker, A., Radford, S. E., Karplus, M., and Dobson, C. M. (1991).Nature 349, 633–636.Google Scholar
  37. Nakasako, M., Wada, M., Tokutomi, S., Yamamoto, K. T., Sakai, J., Kataoka, M., Tokunaga, F., and Furuya, M. (1990).Photochem. Photobiol. 52, 3–12.Google Scholar
  38. Parker, W., and Song P.-S. (1990).J. Biol. Chem. 265, 17568–17575.Google Scholar
  39. Partis, M. D., and Grimm, R. (1990).Z. Naturforsch. 45c, 987–998.Google Scholar
  40. Phillips, D. C. (1974). InLysozyme (Osserman, E. F.,et al., eds.), Academic Press, New York.Google Scholar
  41. Quail, P. H., Gatz, C., Hershey, H. P., Jones, A. M., Lissemore, J. S., Parks, B. M., Sharrock, R. A., Baker, R. F., Idler, K., Murray, M. G., Koornneef, M., and Kendrick, R. E. (1987). InPhytochrome and Photoregulation in Plants (Furuya, M., ed.), Academic Press, Tokyo, pp. 23–38.Google Scholar
  42. Richardson, J. S., and Richardson, D.C. (1989). InPrediction of Protein Structure and the Principles of Protein Conformation (Fasman, G. D., ed.), Plenum Press, New York, pp. 1–90.Google Scholar
  43. Sato, N. (1988).Plant Mol. Biol. 11, 697–710.Google Scholar
  44. Schirmer, T., Bode, W., Huber, R., Sidler, W., and Zuber, H. (1985).J. Mol. Biol. 184, 257–277.Google Scholar
  45. Schulz, G. E., and Schirmer, R. H. (1979). InPrinciples of Protein Structure (Cantor, C. R., ed.), Springer, New York, pp. 66–107.Google Scholar
  46. Sharrock, R. A., and Quail, P. H. (1989).Gene and Development 3, 1745–1757.Google Scholar
  47. Sharrock, R. A., Lissemore, J. L., and Quail, P. H. (1986).Gene 47, 287–295.Google Scholar
  48. Singh, B. R., and Song, P.-S. (1990).Photochem. Photobiol. 52, 249–254.Google Scholar
  49. Sommer, D., and Song, P.-S. (1990).Biochemistry 29, 1943–1948.Google Scholar
  50. Song, P.-S., and Yamazaki, I. (1987). InPhytochrome and Photoregulation in Plants (Furuya, M., ed.), Academic Press, Tokyo, pp. 139–156.Google Scholar
  51. Takano, T., and Dickerson, R. E. (1981).J. Mol. Biol. 153, 79–94.Google Scholar
  52. Tanaka, N., Yamane, T., Tsukihara, T., Ashida, T., and Kakudo, M. (1975).J. Biochem. (Tokyo)77, 147–162.Google Scholar
  53. Taylor, W. R., and Thornton, J. M. (1983).Nature 301, 540–542.Google Scholar
  54. Tokutomi, S., Nakasako, M., Sakai, J., Kataoka, J., Yamamoto, K. T., Wada, M., Tokunaga, F., and Furuya, M. (1989).FEBS Lett. 247, 139–142.Google Scholar
  55. Wetlaufer, D. B. (1973).Proc. Nat. Acad. Sci. U.S.A. 70, 697–701.Google Scholar
  56. Wetlaufer, D. B. (1981).Adv. Protein Chem. 34, 61–92.Google Scholar
  57. Wodak, S. J., and Janin, J. (1981).Biochemistry 20, 6544–6552.Google Scholar
  58. Wong, Y.-S., and Lagarias, J. C. (1989).Proc. Natl. Acad. Sci. U.S.A. 86, 3469–3473.Google Scholar
  59. VanDer Woude, W. J. (1985).Photochem. Photobiol. 42, 655–661.Google Scholar
  60. Viestra, R. D., Quail, P. H., Hahn, T.-R., and Song, P.-S. (1987).Photochem. Photobiol. 45, 429–432.Google Scholar
  61. Yamamoto, K. T. (1987). InPhytochrome and Photoregulation in Plants (Furuya, M., ed.), Academic Press, Tokyo, pp. 63–82.Google Scholar
  62. Zvelebil, M. J., Barton, G. J., Taylor, W. R., and Sternberg, M. J. E. (1987).J. Mol. Biol. 195, 957–961.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Marek Romanowski
    • 1
  • Pill-Soon Song
    • 1
  1. 1.Department of Chemistry and Institute for Cellular and Molecular PhotobiologyUniversity of NebraskaLincoln

Personalised recommendations