Journal of Protein Chemistry

, Volume 5, Issue 2, pp 147–155 | Cite as

Mechanisms of enzyme action and inhibition: Transition state analogues for acid-base catalysis

  • Richard Wolfenden
  • Lloyd Frick
Special Issue: The Fifth Symposium Of The Federation Of Asian And Oceanian Biochemists. “Enzyme Mechanisms” (Part I)

Abstract

The theory of absolute reaction rates implies that the grip of a catalyst on a substrate tightens with substrate activation, relaxing later as products are formed and released. Analogs that mimic different kinds of substrate activation can, through the structural details of their complexes with enzymes, indicate how active site residues are involved in the enhancement of reactions rates. In several cases, bonds involved in general acid-base catalysis have been identified tentatively; and recent evidence points to a hydrogen bond of remarkable stability in the transition state in enzymatic deamination of adenosine. Similar approaches have been used to enzymes that act primarily by substrate distortion, nucleophilic catalysis, solvent removal and catalysis by approximation. Two recurring observations, that were not expected in theory, have been the binding of inhibitors in ionized forms that are rare in solution, and changes in enzyme configuration that accompany binding of transition state analogs. Origins and implications of these findings will be discussed with specific reference to the role of solvent water in catalytic phenomena.

Key words

Absolute reaction rates active site residues transition state solvent water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, V. E., Weiss, P. M., and Cleland, W. W. (1984).Biochemistry 23, 2779.Google Scholar
  2. Bartlett, P. A., and Marlowe, C. K. (1983).Biochemistry 22, 4618.Google Scholar
  3. Campbell, I. D., Jones, R. B., Kiener, P. A., Richards, E., and Wolfenden, R. (1978).Biochem. Biophys. Res. Commun. 83, 347.Google Scholar
  4. Cha, S., Agarwal, R. P., and Parks, R. E., Jr. (1975).Biochem. Pharmacol. 24, 2187.Google Scholar
  5. Fersht, A. R., Shi, J. P., Knill-Jones, J., Lowe, D. M., Wilkinson, A. J., Blow, D. M., Brick, P., Carter, P., Waye, M. M. Y., and Winter, G. (1985).Nature 314, 235.Google Scholar
  6. Frick, L., Wolfenden, R., Smal, E., and Baker, D. C. (1986).Biochemistry 25, 1616.Google Scholar
  7. Frieden, C., Kurz, L. C., and Gilbert, H. R. (1980).Biochemistry 19, 5303.Google Scholar
  8. Ghisla, S., and Massey, V. (1975).J. Biol. Chem. 250, 578.Google Scholar
  9. Guthrie, J. P. (1977).J. Am. Chem. Soc. 99, 3391.Google Scholar
  10. Hartman, F. C., LaMuraglia, G. C., Tomozawa, Y., and Wolfenden, R. (1975).Biochemistry 14, 5274.Google Scholar
  11. Jencks, W. P. (1969). InCatalysis in Chemistry and Enzymology, McGraw-hill, New York, pp. 163–242.Google Scholar
  12. Kluger, R., and Smyth, T. (1981).J. Am. Chem. Soc. 103, 1214.Google Scholar
  13. Koenig, S. H., Hallenga, K., and Shporer, M. (1975).Proc. Natl. Acad. Sci. USA 72, 2667.Google Scholar
  14. Matthews, D. A.,et al. (1978).J. Biol. Chem. 253, 6946.Google Scholar
  15. Nakamura, H., Koyama, G., Iitaka, Y., Ohno, M., Yagisawa, N., Kondo, S., and Umezawa, H. (1974).J. Am. Chem. Soc. 96, 4327.Google Scholar
  16. Page, M. I., and Jencks, W. P. (1971).Proc. Natl. Acad. Sci. USA 68, 1678.Google Scholar
  17. Polanyi, M. (1921).Z. Elektrochem. 27, 143.Google Scholar
  18. Porter, D. J. T., and Bright, H. J. (1980).J. Biol. Chem. 255, 4772.Google Scholar
  19. Rich, D. H. (1985).J. Med. Chem. 28, 263.Google Scholar
  20. Schloss, J. V., Porter, D. J. T., Bright, H. J., and Cleland, W. W. (1980).Biochemistry 19, 2358.Google Scholar
  21. Schmitt, A., Bottke, I., and Siebert, G. (1966).Z. Physiol. Chem. 347, 18.Google Scholar
  22. Schramm, V. L., and Baker, D. C. (1985).Biochemistry 24, 641.Google Scholar
  23. Segal, H. L. (1958). InThe Enzymes, (Boyer, P. D., Lardy, H., and Myrbäck, eds.) Vol. 1, p. 1.Google Scholar
  24. Thompson, R. C. (1974).Biochemistry 13, 5495.Google Scholar
  25. Wentworth, D. F., and Wolfenden, R. (1974).Biochemistry 13, 4715.Google Scholar
  26. Wolfenden, R. (1969a).Nature 223, 704Google Scholar
  27. Wolfenden, R. (1969b).Biochemistry 8, 2409.Google Scholar
  28. Wolfenden, R. (1970).Biochemistry 9, 3404.Google Scholar
  29. Wolfenden, R. (1974).Mol. Cell. Biochem. 3, 207.Google Scholar
  30. Wolfenden, R. (1976).Annu. Rev. Biophys. Bioeng. 5, 271.Google Scholar
  31. Wolfenden, R., Wentworth, D. F., and Mitchell, G. N. (1977).Biochemistry 16, 5071.Google Scholar
  32. Wolfenden, R., and Frick, L. (1986). InEnzyme Mechanisms (Page, M., and Williams, A. eds), Royal Society of Chemistry, London, in press.Google Scholar
  33. Woo, P. W. K., Dion, H. W., Lange, S. M., Dahl, L. F., and Durham, L. (1974).J. Heterocycl. Chem. 11, 641.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Richard Wolfenden
    • 1
  • Lloyd Frick
    • 1
  1. 1.Department of BiochemistryUniversity of North CarolinaChapel Hill

Personalised recommendations