Advertisement

Journal of Protein Chemistry

, Volume 3, Issue 4, pp 357–367 | Cite as

Inhibition by cupric ions of the hydration of CO2 catalyzed by carbonic anhydrase II

  • T. Kararli
  • D. N. Silverman
Article

Abstract

The inhibition by cupric ions of the hydration of CO2 catalyzed by carbonic anhydrase II is interesting because of the results of Tuet al. obtained at chemical equilibrium, indicating that Cu2+ inhibits specifically a proton transfer in the catalytic pathway. We have measured this inhibition at steady state, using stopped-flow methods. The inhibition by Cu2+ of the hydration of CO2 catalyzed by carbonic anhydrase II had aK I near 1×10−6 M atpH 7.0 and gave inhibition that is noncompetitive atpH 6.0 and mixed, but close to uncompetitive, atpH 6.8. ThepH dependence of this binding is consistent with a binding site for Cu2+ on the enzyme with apK a near 7. The binding interaction between Cu2+ and the fluorescent inhibitor 5-dimethylaminonaphthalene-l-sulfonamide on carbonic anhydrase II was noncompetitive, indicating that the binding site for Cu2+ is distinct from the coordination sphere of zinc in which the actual interconversion of CO2 and HCO 3 and the binding of sulfonamides takes place.

Key words

carbonic anhydrase mechanism of catalysis inhibition copper 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell, I. D., Lindskog, S., and White, A. I. (1975).J. Mol. Biol. 98, 597–614.Google Scholar
  2. Chen, R. F., and Kernohan, J. C. (1967).J. Biol. Chem. 242, 5813–5823.Google Scholar
  3. Cleland, W. W. (1967).Adv. Enzymol. Relat. Areas Mol. Biol. 29, 1–32.Google Scholar
  4. Edsall, J. T., Mehta, S., Meyers, D. V., and Armstrong, J. M. (1966).Biochem. Z. 345, 36–39.Google Scholar
  5. Evelhoch, J. L., Bocian, D. F., and Sudmeier, J. L. (1981).Biochemistry 20, 4951–4954.Google Scholar
  6. Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S., and Singh, R. M. (1966).Biochemistry 5, 467–477.Google Scholar
  7. Kanamori, K. and Roberts, J. D. (1983).Biochemistry 22, 2658–2664.Google Scholar
  8. Kannan, K. K. (1980). InBiophysics and Physiology of Carbon Dioxide (Bauer, C., Gros, G., and Bartels, H., eds.), Springer-Verlag, New York, pp. 184–205.Google Scholar
  9. Khalifah, R. G. (1971).J. Biol. Chem. 246, 2561–2573.Google Scholar
  10. Khalifah, R. G., Strader, D. J., Bryant, S. H., and Gibson, S. M. (1977).Biochemistry 16, 2241–2247.Google Scholar
  11. Lindskog, S., Ibrahim, S. A., Jonsson, B. H., and Simonsson, I. (1982). InCoordination Chemistry of Metalloenzymes in Hydrolytic and Oxidative Processes (Bertini, I., Drago, R. S., and Luchinat, C., eds.), Reidel, Dordrecht, pp. 49–64.Google Scholar
  12. Magid, E. (1967).Scand. J. Haematol. 4, 257–270.Google Scholar
  13. Nakon, R., and Krishnamoorthy, C. R. (1983).Science 221, 749–750.Google Scholar
  14. Pocker, Y., and Bjorkquist, D. W. (1977).J. Am. Chem. Soc. 99, 6537–6543.Google Scholar
  15. Rowlett, R. (1984).J. Protein Chem., this issue, following paper.Google Scholar
  16. Silverman, D. N., and Vincent, S. H. (1983).CRC Crit. Rev. Biochem. 14, 207–225.Google Scholar
  17. Steiner, H., Jonsson, B. H., and Lindskog, S. (1975).Eur. J. Biochem. 59, 253–259.Google Scholar
  18. Tu, C. K., Wynns, G. C., and Silverman, D. N. (1981).J. Biol. Chem. 256, 9466–9470.Google Scholar
  19. Weber, G. (1952).Biochem. J. 51, 155–167.Google Scholar
  20. Wilkinson, G. N. (1961).Biochem. J. 80, 324–332.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • T. Kararli
    • 1
  • D. N. Silverman
    • 1
  1. 1.Department of PharmacologyUniversity of FloridaGainesville

Personalised recommendations