Fluid Dynamics

, Volume 4, Issue 3, pp 77–84 | Cite as

Elementary solutions of plane nonlinear filtration problems

  • M. G. Alishaev
  • V. M. Entov
  • A. E. Segalov


In the solution of plane problems of filtration theory it is important to study the behavior of the solution near the singular points of the boundary of the flow region (corner points, points of boundary-condition change, and so on) and at infinity (see, for example, [1]). In the present study, this analysis is made for nonlinear filtration problems.

Just as in the analogous problems of gasdynamics [2, 3] and nonlinear elasticity theory [4], to find the singular solutions we make the transformation to the filtration velocity hodograph plane. Examples relating basically to filtration with the limiting gradient are presented.


Filtration Singular Point Plane Problem Flow Region Elasticity Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Ya. Polubarinova-Kochina, Groundwater Flow Theory [in Russian], Gostekhteoretizdat, Moscow, 1952.Google Scholar
  2. 2.
    F. Ringleb, “Exakte Lösungen der Differentialgleichungen einer adiabatischen Gasstromug,” ZAMM, vol. 20, no. 4, 1940.Google Scholar
  3. 3.
    L. I. Sedov, Plane Problems of Hydrodynamics and Aerodynamics [in Russian], Gostekhteoretizdat, Moscow, 1950.Google Scholar
  4. 4.
    H. Neuber, “Theory of stress concentration for shear strained prismatical bodies with arbitrary nonlinear stress-strain law,” Trans. ASME, ser. E, J. Appl. Mech., vol. 28, no. 4, 1961.Google Scholar
  5. 5.
    H. Bateman and A. Erdelyi, Higher Transcendental Functions; Hypergeometric Functions; Legendre Functions [Russian translation], Nauka, Moscow, 1965.Google Scholar
  6. 6.
    V. M. Entov and R. L. Salganik, “The small parameter method in problems of filtration with a limiting gradient,” PMM, vol. 32, no. 5, 1968.Google Scholar
  7. 7.
    Tables of Associated Legendre Functions, Columbia Univ. Press, NY, 1945.Google Scholar
  8. 8.
    I. A. Charnyi, Underground Hydrogasdynamics [in Russian], Gostoptekhizdat, Moscow, 1963.Google Scholar
  9. 9.
    E. M. Minskii, “Turbulent filtration of gas in porous media,” collection: Problems in Natural Gas Extraction, Transport, and Processing [in Russian], Gostoptekhizdat, Moscow-Leningrad, 1951.Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • M. G. Alishaev
    • 1
  • V. M. Entov
    • 1
  • A. E. Segalov
    • 1
  1. 1.Makhachkala, Moscow

Personalised recommendations