Advertisement

Journal of Protein Chemistry

, Volume 3, Issue 5–6, pp 479–489 | Cite as

II. Photoaffinity probes provide a general method to prepare peptide-conjugates from native protein fragments

  • J. M. Robert Parker
  • Robert S. Hodges
Article

Abstract

The advantages of using amino-directed photoprobes to couple native fragments, obtained by enzymatic digestion with trypsin, to protein carriers to prepare peptide-conjugates is described. The following photoprobe reagents were investigated:N-hydroxysuccinimidylp-azidobenzoate,N-hydroxysuccinimidyl ester ofp-azidobenzoylglycine,N-hydroxysuccinimidylp-benzoylbenzoate, and pentachlorophenyl ester ofp-benzoylbenzoyl glycine or the symmetric anhydride ofp-benzoylbenzoylglycine. These reagents modify only the NH2-terminal amino group and/or COOH-terminal ε-amino group of lysine of the tryptic fragments. Since the photoprobe is inert until photolysis, the probe-modified native fragment can be readily purified by high-performance liquid chromatography before cross-linking to the carrier molecule. The benzophenone photoprobes were shown to give the highest incorporation of peptide onto the protein carrier.

Key words

photoaffinity probes peptide-conjugates from native protein fragments benzophenone probes p-azidobenzoyl probes antibodies to protein fragments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al Moudallal, Z., Briand, J. P., and Van Regenmortel, M. H. V. (1982).EMBO 1, 1005–1010.Google Scholar
  2. Anderer, F. A. (1963).Biochim. Biophys. Acta 71, 246–248.Google Scholar
  3. Anderer, F. A., and Schlumberger, H. D. (1965).Biochim. Biophys. Acta 97, 503–509.Google Scholar
  4. Atassi, M. Z. (1975).Immunochemistry 12, 423–438.Google Scholar
  5. Atassi, M. A. (1978).Immunochemistry 15, 909–936.Google Scholar
  6. Balachandran, N., Harnish, D., Rawls, W. E., and Bacchetti, S. (1982).J. Virol. 44, 344–355.Google Scholar
  7. Bittle, J. L., Houghten, R. A., Alexander, H., Shinnick, T. M., Sutcliffe, J. G., Lerner, R. A., Rowlands, D. J., and Brown, F. (1982).Nature 298, 30–33.Google Scholar
  8. Chong, P. C. S., and Hodges, R. S. (1981).J. Biol. Chem. 256, 5064–5070.Google Scholar
  9. Galardy, R. E., Craig, L. C., Jamieson, J. D., and Printz, M. P. (1974).J. Biol. Chem. 249, 3510–3518.Google Scholar
  10. Koprowski, H., Gerhard, W., and Croce, C. M. (1980). InAnimal Virus Genetics ICN-UCLA Symposia on Molecular and Cellular Biology (Fields, B. N., Jaenisch, R., and Fox, C. F., eds.), Vol. 18.Google Scholar
  11. Lerner, R. A. (1982).Nature 299, 592–596.Google Scholar
  12. Longbeheim, H., Arnon, R., and Sela, M. (1976).Proc. Natl. Acad. Sci. USA 73, 4636–4640.Google Scholar
  13. Lubeck, M., and Gerhard, W. (1982).Virology 118, 1–7.Google Scholar
  14. Niman, H. L., Houghten, R. A., Walker, L. E., Reisfeld, R. A., Wilson, I. A., Hogle, J. M., and Lerner, R. A. (1983).Proc. Natl. Acad. Sci. USA 80, 4949–4953.Google Scholar
  15. Noble, A. G., Lee, G. T. Y., Sprague, R., Parish, M. L., and Spear, P. G. (1983).Virology 129, 218–224.Google Scholar
  16. Parker, J. M. R., and Hodges, R. S. (1985).J. Protein Chem. 3, 465–478.Google Scholar
  17. Stromaier, K., Franze, R., and Adam, K. H. (1982).J. Gen. Virol. 59, 295–305.Google Scholar
  18. Watts, T. H., Sastry, P. A., Hodges, R. S., and Paranchych, W. (1983).Infection and Immunity 42, 113–121.Google Scholar
  19. Worobec, E. A., Taneja, A. K., Hodges, R. S., and Paranchych, W. (1983).J. Bacteriol. 153, 955–961.Google Scholar
  20. Worobec, E. A., Paranchych, W., Parker, J. M. R., Taneja, A. K., and Hodges, R. S. (1985).J. Biol. Chem. 260, 938–943.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • J. M. Robert Parker
    • 1
  • Robert S. Hodges
    • 1
  1. 1.Department of Biochemistry and the Medical Research Council of Canada Group in Protein Structure and FunctionUniversity of AlbertaEdmontonCanada

Personalised recommendations