Skip to main content
Log in

Protein elasticity based on conformations of sequential polypeptides: The biological elastic fiber

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

Fibrous elastin of the biological elastic fiber is a cross-linked condensed state in which there is roughly one-half polypeptide and one-half water. The precursor protein tropoelastin, a chemical fragmentation product α-elastin, and a sequential polypeptide (l·Val1-l·Pro2-Gly3-l·Val4-Gly5)n, which is a prominent primary structural feature of tropoelastin, are each soluble in all proportions in water at 20°C. On heating to physiological temperatures, each undergoes aggregation and forms a dense viscoelastic phase, which as the fiber itself, is about 60% water. This reversible heat-elicited condensed phase is called the coacervate. Circular dichroism studies show coacervation to be a process of increasing intramolecular order. Electron microscopy (light, scanning, and transmission) shows coacervation to be a process of increasing order intermolecularly. Thus a rise in temperature between 20 and 40°C results in an increase in order of the polypeptide. Coacervation is an inverse temperature transition, and the condensed state is anisotropic at the molecular level. Thermoelasticity studies in water on bovine ligamentum nuchae fibrous elastin and on γ-irradiation cross-linked polypentapeptide coacervates show increases in elastomeric force,f, over the same 20–40°C temperature range in which the inverse temperature transition gives rise to the coacervate, and the constancy off/T with temperature, once the transition is effectively completed, suggests a high-entropy component to the elastomeric force. Thus the data argue for an anisotropic-entropic elastomer.

Detailed conformational studies on the polypentapeptide result in the development of a β-spiral conformation in which there are regularly recurring β-turns in loose helical array (a structure that forms on raising the temperature) and in which there are recurring dynamic suspended segments that are the focal point of large, low-energy oscillatory motions called librations. The structure gives rise to a librational entropy mechanism of elasticity wherein the amplitudes of the rocking motions become damped on stretching. This perspective is substantiated by dielectric relaxation studies on the coacervate state and by characterization of synthetic analogs of the polypentapeptide. Dielectric relaxation studies on a concentrated state of about 60% water show the development of a regular structure over the same temperature range as for the development of the coacervate state, and the development of the regular structure with increasing temperature is seen to parallel the development of elastomeric force with increasing temperature. Increasing elastomeric force coincides with increasing regularity of structure! Synthetic analogs of the polypentapeptide, designed to interfere with the librational processes of the suspended segment, impair elastic function, and an analog that makes the β-turn more rigid results in increased elastic modulus. This development of a librational entropy mechanism for protein elasticity is a departure from the kinetic theory of rubber elasticity, the random network perspective that has dominated the traditional view of biological elasticity for the past several decades. The new perspective opens the way to insightful consideration of new elastomeric biomaterials with numerous biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aaron, B. B., and Gosline, J. M. (1981). Elastin as a random-network elastomer: A mechanical and optical analysis of single elastin fibers.Biopolymers 20, 1247–1260.

    Article  CAS  Google Scholar 

  • Bryant, R. G., and Shirley, W. M. (1980). Dynamical deductions from nuclear magnetic resonance relaxation measurements at the water-protein interface.Biophys. J. 32(1), 3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou, Y. P., and Fasman, G. D. (1977). β-Turns in proteins.J. Mol. Biol. 115, 135–175.

    Article  CAS  PubMed  Google Scholar 

  • Cifferi, A., Hoeve, C. A. J., and Flory, P. J. (1961). Stress-temperature coefficients of polymer networks and the conformational energy of polymer chains.J. Am. Chem. Soc. 83, 1015–1022.

    Article  Google Scholar 

  • Cole, K. S., and Cole, R. H. (1941). Dispersion and absorption in dielectrics I. Alternating current characteristics.J. Chem. Phys. 9, 341–351.

    Article  CAS  Google Scholar 

  • Cook, W. J., Einspahr, H. M., Trapane, T. L., Urry, D. W., and Bugg, C. E. (1980). The crystal structure and conformation of the cyclic trimer of a repleat pentapeptide of elastin, cyclo-(l-valyl-l-prolyl-glycyl-l-valyl-glycyl)3.J. Am. Chem. Soc. 102, 5502–5505.

    Article  CAS  Google Scholar 

  • Cox, B. A., Starcher, B. C., and Urry, D. W. (1973). Coacervation of α-elastin results in fiber formation.Biochim. Biophys. Acta 317, 209–213.

    Article  CAS  PubMed  Google Scholar 

  • Cox, B. A., Starcher, B. C., and Urry, D. W. (1974). Coacervation of tropoelastin results in fiber formation.J. Biol. Chem. 249(3), 997–998.

    Article  CAS  PubMed  Google Scholar 

  • Daynes, R. A., Thomas, M., Alvarez, V. L., and Sandberg, L. B. (1977). The Antigenicity of soluble porcine elastins. I. Measurement of antibody by a radioimmunossay,Conn. Tiss. Res. 5, 75–82.

    Article  CAS  Google Scholar 

  • Delalic, Z., Takashima, S., Adachi, K., and Asakura, T. (1983). Dielectric constant of sickle cell hemoglobin Dielectric properties of sickle cell hemoglobin in solution and gel.J. Mol. Biol. 168, 659–671.

    Article  CAS  PubMed  Google Scholar 

  • Dorrington, K. L., and McCrum (1977). Elastin as a rubber.Biopolymers 16, 1201–1222.

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg, D., and Kauzmann, W. (1969).The Structure and Properties of Water, Oxford University Press, Oxford.

    Google Scholar 

  • Epstein, B. R., Foster, K. R., and Mackay, R. A. (1983). Microwave dielectric properties of ionic and nonionic microemulsions.J. Colloid Interface Sci. 95, 218–227.

    Article  CAS  Google Scholar 

  • Essex, C. G., Grant, E. H., Sheppard, R. J., South, G. P., Symonds, M. S., Mills, G. L., and Slack, J. (1977). Dielectric properties of normal and abnormal lipoproteins in aqueous solution.Ann. N.Y. Acad. Sci. 303, 142–155.

    Article  CAS  PubMed  Google Scholar 

  • Flory, P. J. (1953).Principles of Polymer Chemistry, Chapter XI, Rubber elasticity, Cornell University Press, Ithaca, New York.

    Google Scholar 

  • Flory, P. J., Hoeve, C. A. J., and Ciffen, A. (1959). Influence of bond angle restrictions on polymer elasticity.J. Polymer Sci. 34, 337–347.

    Article  CAS  Google Scholar 

  • Flory, P. J., Ciferri, A., and Hoeve, C. A. J. (1960). The thermodynamic analysis of thermoelastic measurements on high elastic materials,J. Polymer Sci. 45, 235–236.

    Article  CAS  Google Scholar 

  • Foster, J. A., Bruenger, E., Gray, W. R., and Sandberg, L. B. (1973). Isolation and amino acid sequences of tropoelastin peptides.J. Biol. Chem. 248, 2876–2879.

    Article  CAS  PubMed  Google Scholar 

  • Foster, J. A., Rubin, L., Kagan, H. M., Franzblau, C., Bruenger, E., and Sandberg, L. B. (1974). Isolation and characterization of cross-linked peptides from elastin.J. Biol. Chem. 249, 6191–6196.

    Article  CAS  PubMed  Google Scholar 

  • Foster, K. R., Epstein, B. R., Jenin, P. C., and Mackay, R. A. (1982). Dielectric studies on nonionic microemulsions.J. Colloid Interface Sci. 88, 233–246.

    Article  CAS  Google Scholar 

  • Franzblau, C., and Lent, R. W. (1969). Studies on the chemistry of elastin. InBrookhaven Symposium in Biology: Structure, Function and Evolution in Proteins, Vol. 2, pp. 358–377.

    Google Scholar 

  • Franzblau, C., Sinex, F. M., and Faris, B. (1965). Isolation of an unknown component from hydrolysates of elastin.Nature 205, 802–803.

    Article  Google Scholar 

  • Frohlich, H. 1958.Theory of Dielectrics, 2nd ed., Clarendon Press, Oxford.

    Google Scholar 

  • Gerger, G. E., and Anwar, R. A. (1975). Comparative studies of the cross-linked regions of elastin from bovine ligamentum nuchae and bovie, porcine, and human aorta.Biochem. J. 149, 685–695.

    Article  Google Scholar 

  • Gotte, L., Mammi, M., and Pezzin, G. (1972). Scanning electron microscope observations on elastin,Conn. Tiss. Res. 1, 61–67.

    Article  CAS  Google Scholar 

  • Göttmann, O., and Dittrich, A. (1984). A broad-band measuring equipment for determining the complex permittivity of liquid dielectric materials within the frequency range of 1 MHz to 1 GHz.J. Phys. E.: Sci. Instrum. 17, 772–777.

    Article  Google Scholar 

  • Grant, E. H., Sheppard, R. J., and South, G. P. (1978).Dielectric Behaviour of Biological Molecules in Solution, Oxford University Press, Oxford.

    Google Scholar 

  • Gray, W. R., Sandberg, L. B., and Foster, J. A. (1973). Molecular model for elastin structure and function.Nature 246, 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Henze, R., and Schreiber, U. (1984). Messungen der Dielektrischen Relaxation in Aerosol-OT/H2O/Cyclohexan-Lösungen.Ber. Bunsengesellschaft Phys. Chem. (in press).

  • Henze, R., and Urry, D. W. (1985). Dielectric relaxation studies demonstrate a peptide librational mode in the polypentapeptide of elastin.J. Am. Chem. Soc. 107.

  • Hoeve, C. A. J., and Flory, P. J. (1958). The elastic properties of elastin.J. Am. Chem. Soc. 80, 6523–6526.

    Article  CAS  Google Scholar 

  • Hoeve, C. A. J., and Flory, P. J. (1974). The elastic properties of elastin.Biopolymers 13, 677–686.

    Article  CAS  PubMed  Google Scholar 

  • Kaatze, U., Göttmann, O., Padbielski, R., Pottel, R., and Terveer, U. (1978). Dielectric relaxation in aqueous solutions of some oxygen-containing linear hydrocarbon polymers.J. Phys. Chem. 82, 112–120.

    Article  CAS  Google Scholar 

  • Khaled, M. A., and Urry, D. W. (1976). Nuclear Overhauser enhancement demonstration of the type II β-turn in repeat peptides of tropoelastin.Biochem. Biophys. Res. Commun. 70(2), 485–491.

    Article  CAS  PubMed  Google Scholar 

  • Khaled, M. A., Venkatachalam, C. M., Sugano, H., and Urry, W. D. (1981). Conformational characterization of cyclopentapeptide, [l·Val-l·Pro-Gly-l·Val-Gly]: A repeating analogue of elastin.Int. J. Peptide Protein Res. 17, 23–33.

    Article  CAS  Google Scholar 

  • Khaled, M. A., Prasad, K. U., and Urry, D. W. (1982). Temperature induced conformation transition of cyclo-(l·Val-l·Pro-Gly-l·Val-Gly)2: An analogue of the repeat pentapeptide of tropoelastin.Biochim. Biophys. Acta 701, 285–294.

    Article  Google Scholar 

  • Mark, J. E. (1976). Thermoelastic results on rubberlike networks and their bearing on the foundations of elasticity theory,J. Polymer Sci.: Macromolec. Rev. II, 135–159.

    Google Scholar 

  • Mecham, R. P., and Foster, J. A. (1978). A structural model for desmosine cross-linked peptides.Biochem J. 173, 617–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momany, F. A., Carruthers, L. M., McGuire, R. F., and Scheraga, H. A. (1974). Intermolecular potentials from crystal data. III. Determination of empirical potentials and application to the packing configurations and lattice energies in crystals of hydrocarbons, carboxylic acids, amines, and amides.J. Phys. Chem. 78, 1595.

    Article  CAS  Google Scholar 

  • Momany, F. A., McGuire, R. F., Burgess, A. W., and Scheraga, H. A. (1975). Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids.Phys. Chem. 79, 2361.

    Article  CAS  Google Scholar 

  • Partridge, S. M. (1969). Elastin, biosynthesis and structure.Gerontologia 15, 85–100.

    Article  CAS  PubMed  Google Scholar 

  • Rapaka, R. S., and Urry, D. W. (1978). Coacervation of sequential polypeptide models of tropoelastin: Synthesis of H-(Val-Ala-Pro-Gly)n-Val-OMe and H(Val-Pro-Gly-Gly)n-Val-OMe.Int. J. Peptide Protein Res. 11(2), 97–108.

    Article  CAS  Google Scholar 

  • Roy, C. S. (1880). The elastic properties of the arterial wall.J. Physiol. 3, 125–159.

    Article  Google Scholar 

  • Sandberg, L. B., Weissman, N., and Smith, D. W. (1969). The purification and partial characterization of a soluble elastin-like protein from copper-defficient porcine aorta.Biochemistry 8, 2940–2945.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg, L. B., Weissman, N., and Gray, W. R. (1971). Structural features of tropoelastin related to the sites of cross-links in aortic elastin.Biochemistry 10, 52–56.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg, L. B., Gray, W. R., Foster, J. A., Torres, A. R., Alvarez, V. L., and Janata, J. (1977). Primary structure of porcine tropoelastin.Adv. Exp. Med. Biol. 79, 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg, L. B., Soskel, N. T., and Leslie, J. B. (1981).Elastin structure, biosynthesis and relation to disease states.N. Engl. J. Med. 304, 566–579.

    Article  CAS  PubMed  Google Scholar 

  • Smith, D. W., Weissman, N., and Carnes, W. H. (1968). Cardiovascular studies on copper deficient swine. XII. Partial purification of a soluble protein resembling elastin.Biochem. Biophys. Res. Commun. 31, 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Smith, D. W., Brown, D. M., and Carnes, W. H. (1972). Preparation and properties of salt-soluble elastin.J. Biol. Chem. 247, 2427–2432.

    Article  CAS  PubMed  Google Scholar 

  • Starcher, B. C., Saccomani, G., and Urry, W. D. (1973). Coacervation and ion-binding studies on aortic elastin.Biochim. Biophys. Acta 310, 481–486.

    Article  CAS  Google Scholar 

  • Suzuki, T., Adachi, K., and Kotaka, T. (1981). Dielectric relaxations of water molecules occluded in polymeric media: Some hydrophobic polymer systems.Polymer J. 13, 385–397.

    Article  CAS  Google Scholar 

  • Takashima, S., Gabriel, C., Sheppard, R. J., and Grant, E. H. (1984). Dielectric behavior of DNA solution at radio and microwave frequencies (at 20°C).Biophys. J. 46, 29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, J., Elsden, D. F., and Partridge, S. M. (1963). Degradation products from elastin.Nature 200, 651–562.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W. (1971). Neutral sites for calcium ion binding to elastin and collagen: A charge neutralization theory for calcification and its relationship to atherosclerosis.Proc. Natl. Acad. Sci. USA 68, 810–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urry, D. W. (1972). A molecular theory of ion conducting channels: A field-dependent transition between conducting and nonconducting conformations.Proc. Natl. Acad. Sci. USA 69, 1610–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urry, D. W. (1978). Molecular perspectives of vascular wall structure and disease: The elastic component.Perspect. Biol. Med. 21(2), 265–295.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W. (1982). Characterization of soluble peptides of elastin by physical techniques. InMethods in Enzymology (Cunningham, L. W., and Frederiksen, D. W., eds.), Academic Press, New York, Vol.82, 673–716.

    Google Scholar 

  • Urry, D. W. (1983). What is elastin; What is not.Ultrastruct. Pathol. 4, 227–251.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., and Long, M. M. (1976). Conformations of the repeat peptides of elastin in solution: An application of proton and carbon-13 magnetic resonance to the determination of polypeptide secondary structure,CRC Crit. Rev. Biochem. 4, 1–45.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., and Long, M. M. (1977). On the conformation, coacervation and function of polymeric models of elastin. InElastin and Elastic Tissue (Sandberg, L. B., Gray, W. R., and Franzblau, C., eds.), Plenum Press, New York, New York, pp. 685–714.

    Chapter  Google Scholar 

  • Urry, D. W., and Prasad, K. U. (1985). Syntheses, characterizations and medical uses of the polypentapeptide of elastin and its analogs. InBiocompatibility of Natural Tissues and Their Synthetic Analogues (D. F. Williams, ed.), CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Urry, D. W., and Venkatachalam, C. M. (1983). A librational entropy mechanism for elastomers with repeating peptide sequences in helical array.Int. J. Quantum Chem.: Quantum Biol. Symp. No. 10,1983, 81–93.

  • Urry, D. W., Long, M. M., Cox, B. A., Ohnishi, T., Mitchell, L. W., and Jacobs, M. (1974). The synthetic polypentapeptide of elastin coacervates and forms filamentous aggregates.Biochem. Biophys. Acta 371, 597–602.

    CAS  PubMed  Google Scholar 

  • Urry, D. W., Okamoto, K., Harris, R. D., Hendrix, C. F., and Long, M. M. (1976). Synthetic, cross-linked polypentapeptide of tropoelastin: An anisotropic, fibrillar elastomer.Biochemistry 15, 4083–4089.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Khaled, M. A., Rapaka, R. S., and Okamoto, K. (1977). Nuclear Overhauser enhancement evidence for inverse temperature dependence of hydrophobic side chain proximity in the polytetrapeptide of tropoelastin.Biochem. Biophys. Res. Commun. 79(3), 700–706.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Long, M. M., and Sugano, H. (1978). Cyclic analog of elastin polyhexapeptide exhibits an inverse temperature transition leading to crystallization.J. Biol. Chem. 253(18), 6301–6302.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Trapane, T. L., Sugano, H., and Prasad, K. U. (1981). Sequential polypeptides of elastin: Cyclic conformational correlates of the linear polypentapeptide.J. Am. Chem. Soc. 103, 2080–2089.

    Article  CAS  Google Scholar 

  • Urry, D. W., Venkatachalam, C. M., Long, M. M., and Prasad, K. U. (1982). Dynamic β-spirals and a librational entropy mechanism of elasticity. InConformation in Biology (Srinivasan, R., and Sarma, R. H., eds.), Adenine Press, pp. 11–27.

  • Urry, D. W., Trapane, T. L., Long, M. M., and Prasad, K. U. (1983a). Test of the librational entropy mechanism of elasticity of the polypentapeptide of elastin: Effect of introducing a methyl moiety residue-5.J. Chem. Soc. Faraday Trans. I 79, 853–868.

    Article  CAS  Google Scholar 

  • Urry, D. W., Trapane, T. L., Wood, S. A., Walker, J. T., Harris, R. D., and Prasad, K. U. (1983b).d·Ala5 analog of the elastin polypentapeptide Physical characterization.Int. J. Peptide Protein Res. 22, 164–175.

    Article  CAS  Google Scholar 

  • Urry, D. W., Henze, R., Harris, R. D., Prasad, K. U. (1984a). Polypentapeptide of Elastin: Temperature dependence correlation of elastomeric force and dielectric permittivity.Biochem. Biophys. Res. Commun. 125, 1082–1088.

    Article  CAS  PubMed  Google Scholar 

  • Urry, D. W., Trapane, T. L., Wood, S. A., Harris, R. D., Walker, J. T., and Prasad, K. U. (1984b).d·Ala3 analog of elastin polypentapeptide: An elastomer with an increased Young's modulus.Int. J. Peptide Protein Res. 23, 425–434.

    Article  CAS  Google Scholar 

  • Urry, D. W., Henze, R., Redington, P., Long, M. M., and Prasad, K. U. (1985a). Temperature dependence of dielectric relaxations in α-elastin coacervate: Evidence for a peptide librational mode.Biochem. Biophys. Res. Commun. (in press).

  • Urry, D. W., Trapane, T. L., Igbal, M., Venkatachalam, C. M., and Prasad, K. U. (1985b). Carbon-13 NMR relaxation studies demonstrate an inverse temperature transition in the elastin polypentapeptide.Biochemistry (in press).

  • Urry, D. W., Venkatachalam, C. M., Wood, S. A., and Prasad, K. U. (1985c). Molecular structures and librational procceses in sequential polypeptides: From ion channel mechanisms to bioelastomers. In (Sarma, R. H., and Clement, E., eds.). Adenine Press, Guilderland, New York.

    Google Scholar 

  • Urry, D. W., Wood, S. A., Harris, R. D., and Prasad, K. U. (1985d). Polypentapeptide of elastin as an elastomeric biomaterial. InPolymers as Biomaterials, Plenum Press, New York.

    Google Scholar 

  • Venkatachalam, C. M., and Urry, D. W. (1981). Development of a linear helical conformation from its cyclic correlate. β-Spiral model of the elastin poly(pentapeptide), (VPGVG)n.Macromolecules 14, 1225–1229.

    Article  CAS  Google Scholar 

  • Venkatachalam, C. M., Khaled, M. A., Sugano, H., and Urry, D. W. (1981). Nuclear magnetic resonance and conformational energy calculations of repeat peptides of clastin: Conformational characterization of cyclopentadecapeptide, cyclo(l-Val1-l-Pro2-Gly3-l-Val4-Gly5)3.J. Am. Chem. Soc. 103, 2372–2379.

    Article  CAS  Google Scholar 

  • Venkatachalam, C. M., and Urry, D. W. (1985). Calculation of dipole moment changes due to peptide librations in the dynamic β-spiral of the polypentapeptide of elastin.Int. J. Quantum Chem.: Quantum Biol. Symp. 12 (in press).

  • Volpin, D., Urry, D. W., Cox, B. A., and Goette, L. (1976a). Optical diffraction of tropoelastin and α-elastin coacervates.Biochim. Biophys. Acta 439, 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Volpin, D., Urry, D. W., Pasquali-Ronchetti, I., and Gotte, L. (1976b). Studies by electron microscopy on the structure of coacervates of synthetic polypeptides of tropoelastin.Micron 7, 193–198.

    Google Scholar 

  • Woody, R. W. (1974). Studies of theoretical circular dichroism of polypeptides: Contributions of β-turns. InPeptides, Polypeptides and Proteins (Blout, E. R., Bovey, F. A., Goodman, M., and Lotan, N., eds.), Wiley, New York, 338–350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urry, D.W. Protein elasticity based on conformations of sequential polypeptides: The biological elastic fiber. J Protein Chem 3, 403–436 (1984). https://doi.org/10.1007/BF01025061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025061

Key words

Navigation