Journal of Protein Chemistry

, Volume 9, Issue 5, pp 573–582 | Cite as

Circular dichroism studies on helical structure preferences of amino acid residues of proteins caused by sodium dodecyl sulfate

  • Kunio Takeda
  • Yoshiko Moriyama


The extent of helical structure of 19 intact proteins and of 15 proteins with no disulfide bridges in the absence and presence of 10 mM sodium dodecyl sulfate (SDS) was determined using the curve-fitting method of circular dichroic spectra. The change in helicity caused by the addition of SDS was examined as a function of each amino acid fraction. An increase in the helicity upon the addition of SDS occurred in most of the proteins with no disulfide bridges (C proteins) and containing more than 0.06 Lys fraction. In most of the intact proteins (B proteins), most of which contained disulfide bridges, helicity in SDS decreased with an increase in Lys fraction. The helicity of the C proteins in SDS also tended to increase with an increase in the Leu and Phe fractions, while it decreased with an increase in the Gly fraction. For the helicity of the B proteins in SDS, there was a tendency to increase with increased Asn fraction and decrease with increased His fraction. On the other hand, amino acids were divided into eight groups according to their side-chain properties and the conformational preference for each of the amino acid groups of C proteins was calculated using a simple assumption.

Key words

Protein structure secondary structure amino acid residue fraction SDS CD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batra, P. P., Sasa, K., Ueki, T., and Takeda, K. (1989a).J. Protein Chem. 8, 221–229.Google Scholar
  2. Batra, P. P., Moriyama, Y., and Takeda, K. (1989b).Biochem. Intern. 18, 319–324.Google Scholar
  3. Batra, P. P., Sasa, K., Ueki, T. and Takeda, K. (1989c).Int. J. Biochem. 21, 857–862.Google Scholar
  4. Batra, P. P., Sasa, K., Ueki, T., and Takeda, K. (1989d).J. Protein Chem. 8, 609–617.Google Scholar
  5. Chen, Y. H., Yang, J. T., and Chau, K. H. (1974).Biochemistry 13, 3350–3359.Google Scholar
  6. Chou, P. Y., and Fasman, G. D. (1974a).Biochemistry 13, 211–222.Google Scholar
  7. Chou, P. Y., and Fasman, G. D. (1974b).Biochemistry 13, 222–245.Google Scholar
  8. Chou, P. Y., and Fasman, G. D. (1978a).Advan. Enzymol. 47, 45–148.Google Scholar
  9. Chou, P. Y., and Fasman, G. D. (1978b).Ann. Rev. Biochem. 47, 251–276.Google Scholar
  10. Creamer, L. K., Parry, D. A. D., and Malcolm, G. N. (1983).Arch. Biochem. Biophys. 227, 98–105.Google Scholar
  11. Guzzo, A. V. (1965).Biophys. J. 5, 809–821.Google Scholar
  12. Hunt, A. H., and Jirgensons, B. (1973).Biochemistry 12, 4435–4441.Google Scholar
  13. Jirgensons, B. (1967).J. Biol. Chem. 242, 912–918.Google Scholar
  14. Jones, M. N. (1975). InBiological Interfaces, Elsevier, Amsterdam, pp. 101–130.Google Scholar
  15. Kendrew, J. C., Dickerson, R. E., Strandberg, B. E., Hart, R. G., Davies, D. R., Phillips, D. C., and Shore, V. C. (1960).Nature (London)185, 422–427.Google Scholar
  16. Kendrew, J. C., Watson, H. C., Strandberg, B. E., Dickerson, R. E., Phillips, D. C., and Shore, V. C. (1961).Nature (London)190, 666–670.Google Scholar
  17. Lapanje, S. (1978). InPhysicochemical Aspects of Protein Denaturation, Wiley-Interscience, New York, pp. 156–179.Google Scholar
  18. Levitt, M., and Greer, J. (1977).J. Mol. Biol. 114, 181–239.Google Scholar
  19. Levitt, M. (1978).Biochemistry 17, 4277–4285.Google Scholar
  20. Mattice, W. L., Riser, J. M., and Clark, D. S. (1976).Biochemistry 15, 4264–4272.Google Scholar
  21. Sober, H. A., and Harte, R. A. (eds.) (1973). InHandbook of Biochemistry (Selected Data for Molecular Biology), 2nd ed., CRC Press, Cleveland, pp. C71-C92.Google Scholar
  22. Steinhardt, J., and Reynolds, J. A. (1969). InMultiple Equilibria in Proteins, Academic Press, New York, pp. 239–302.Google Scholar
  23. Takeda, K., Miura, M., and Takagi, T. (1981).J. Colloid Interface Sci. 82, 38–44.Google Scholar
  24. Takeda, K., Shigeta, M., and Aoki, K. (1987).J. Colloid Interface Sci. 117, 120–126.Google Scholar
  25. Takeda, K., Sasa, K., Kawamoto, K., Wada, A., and Aoki, K. (1988a).J. Colloid Interface Sci. 124, 284–289.Google Scholar
  26. Takeda, K., Sasa, K., Nagao, M., and Batra, P. P. (1988b).Biochim. Biophys. Acta 957, 340–344.Google Scholar
  27. Takeda, K., Wada, A., Yamamoto, K., Hachiya, K., and Batra, P. P. (1988c).J. Colloid Interface Sci. 125, 307–313.Google Scholar
  28. Takeda, K., Wada, A., Nishimura, T., Ueki, T., and Aoki, K. (1989).J. Colloid Interface Sci. 133, 497–504.Google Scholar
  29. Takeda, K., and Moriyama, Y. (1989).J. Protein Chem. 8, 489–496.Google Scholar
  30. Takeda, K., Wada, A., and Moriyama, Y. (1990).Colloid Polym. Sci. (in press).Google Scholar
  31. Timasheff, S. N., and Townend, R. (1961).J. Am. Chem. Soc. 83, 470–473.Google Scholar
  32. Woo, S. L., Creamer, L. K., and Richardson, T. (1982).J. Agric. Food Chem. 30, 65–70.Google Scholar
  33. Wyckoff, H. W., Tsernoglou, D., Hanson, A. W., Knox, J. R., Lee, B., and Richards, F. M. (1970).J. Biol. Chem. 245, 305–328.Google Scholar
  34. Yang, J. T., Wu, C.-S. C., and Martinez, H. M. (1986).Methods Enzymol. 130, 208–269.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Kunio Takeda
    • 1
  • Yoshiko Moriyama
    • 1
  1. 1.Department of Applied ChemistryOkayama University of ScienceOkayamaJapan

Personalised recommendations