Advertisement

Journal of Protein Chemistry

, Volume 9, Issue 1, pp 87–94 | Cite as

Secondary structure of the entomocidal toxin fromBacillus thuringiensis subsp.kurstaki HD-73

  • Christin T. Choma
  • Witold K. Surewicz
  • Paul R. Carey
  • Marianne Pozsgay
  • Harvey Kaplan
Article

Abstract

The secondary structure of the toxin fromBacillus thuringiensis subsp.kurstaki (Btk) HD-73 was estimated by Raman, infrared, and circular dichroism spectroscopy, and by predictive methods. Circular dichroism and infrared spectroscopy gave an estimate of 33–40% α-helix, whereas Raman and predictive methods gave approximately 20%. Raman and circular dichroism spectra, as well as predictive methods, indicated that the toxin contains 32–40% β-sheet structure, whereas infrared spectroscopy gave a slightly lower estimate. Thus, all of these approaches are in agreement that the native conformation of Btk HD-73 toxin is highly folded and contains considerable amounts of both α-helical and β-sheet structures. No significant differences were detected in the secondary structure of the toxin either in solution or as a hydrated pellet.

Key words

Bacillus thuringiensis toxin secondary structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, R. E. Jr., Faust, R. M., Wabiko, H., Raymond, K. C., and Bulla, L. A. (1987).CRC Crit. Rev. Biotechnol. 6, 163–230.Google Scholar
  2. Argos, P., and MohanaRao, J. K. (1986).Methods Enzymol. 130, 185–207.Google Scholar
  3. Bietlot, H., Carey, P. R., Choma, C. T., Kaplan, H., Lessard, T., and Pozsgay, M. (1989).Biochem. J. 260, 87–91.Google Scholar
  4. Bietlot, H., Vishnubhatla, I., Carey, P. R., Pozsgay, M., and Kaplan, H. (1990).Biochem. J. (in press).Google Scholar
  5. Brousseau, R., and Masson, L. (1988).Biotech. Adv. 6, 697–724.Google Scholar
  6. Byler, D. M., and Susi, H. (1986).Biopolymers 25, 469–487.Google Scholar
  7. Carey, P. R. (1982).Biochemical Applications of Raman and Resonance Raman Spectroscopies, Academic Press, New York, pp. 48–70.Google Scholar
  8. Carey, P. R., Fast, P., Kaplan, H., and Pozsgay, M. (1986).Biochim. Biophys. Acta 872, 169–176.Google Scholar
  9. Chang, C. T., Wu, C. S., and Yang, J. T. (1978).Anal. Biochem. 91, 13–31.Google Scholar
  10. Chen, G. C., and Yang, J. T. (1977).Anal. Lett. 10, 1195–1207.Google Scholar
  11. Chen, Y. H., Yang, J. T., and Martinez, H. M. (1972).Biochemistry 11, 4120–4131.Google Scholar
  12. Chou, P. Y., and Fasman, G. D. (1979).Biochemistry 13, 211–222.Google Scholar
  13. Dev, S. B. (1987).J. Biol. Physiol. 15, 57–61.Google Scholar
  14. Fraser, R. D., and Suzuki, E. (1966).Anal. Chem. 38, 1770–1773.Google Scholar
  15. Garnier, J., Osguthorpe, D. J., and Robson, B. (1978).J. Mol. Biol. 120, 97–120.Google Scholar
  16. Harada, I., and Takeuchi, H. (1986). InSpectroscopy of Biological Systems (Clark, R. J., and Hester, R. E., eds.), John Wiley and Sons, New York, pp. 113–175.Google Scholar
  17. Kauppinen, J. K., Moffatt, D. J., Mantsch, H. H., and Cameron, D. C. (1981).Appl. Spectrosc. 35, 271–277.Google Scholar
  18. Lippert, J. L., Tyminski, D., and Desmeules, P. J. (1976).J. Am. Chem. Soc. 98, 7075–7080.Google Scholar
  19. Lord, R. C., and Yu, N. T. (1970).J. Mol. Biol. 50, 509–524.Google Scholar
  20. Nagmatsu, Y., Itai, Y., Hatanaka, C., Funatusu, G., and Hayashi, K. (1984).Agric. Biol. Chem. 48, 611–619.Google Scholar
  21. Parker, F. S. (1983).Applications of Infrared, Raman, and Resonance Raman Spectroscopy in Biochemistry, Plenum Press, New York, pp. 83–155.Google Scholar
  22. Pozsgay, M., Fast, P., Kaplan, H., and Carey, P. R. (1987).J. Invertebr. Pathol. 50, 246–253.Google Scholar
  23. Provencher, S. W., and Glockner, J. (1981).Biochemistry 20, 33–37.Google Scholar
  24. Surewicz, W. K., and Mantsch, H. H. (1988).Biochim. Biophys. Acta 952, 115–130.Google Scholar
  25. Surewicz, W. K., and Mantsch, H. H. (1990). InProtein Engineering—Approaches From the Classical to the Genetic (Narang, S., ed.), Butterworth, New York, pp. 131–157.Google Scholar
  26. Thomas, G. J. Jr., and Prescott, B. (1983).J. Mol. Biol. 165, 321–356.Google Scholar
  27. Tu, A. T. (1986). InSpectroscopy of Biological Systems (Clark, R. J., and Hester, R. E., eds.), John Wiley and Sons, New York, pp. 47–112.Google Scholar
  28. Yang, J. T., Wu, C. S., and Martinez, H. M. (1986).Methods Enzymol. 130, 208–269.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Christin T. Choma
    • 1
  • Witold K. Surewicz
    • 2
  • Paul R. Carey
    • 3
  • Marianne Pozsgay
    • 3
  • Harvey Kaplan
    • 1
  1. 1.Department of ChemistryUniversity of OttawaOttawaCanada
  2. 2.Division of ChemistryNational Research Council of CanadaOttawaCanada
  3. 3.Division of Biological SciencesNational Research Council of CanadaOttawaCanada

Personalised recommendations