Advertisement

Journal of Protein Chemistry

, Volume 11, Issue 6, pp 709–722 | Cite as

Chemical modification of Interleukin-1β: Biochemical characterization of a carbodiimide-catalyzed intramolecular cross-linked protein

  • Anthony W. Yem
  • David M. Guido
  • W. Rodney Mathews
  • Nigel D. Staite
  • Karen A. Richard
  • Mark D. Prairie
  • William C. Krueger
  • Dennis E. Epps
  • Martin R. DeibelJr.
Article

Abstract

We have modified recombinant human Interleukin-1β using 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide atpH 6.5, resulting in the formation of an internally cross-linked protein. The major product (30% yield) of the reaction (17 kD; pI=6.2) was purified and fully characterized by peptide mapping using Endoproteinase Lys C. When digests were conducted under nondenaturing conditions, we found that the modified protein is different from the native protein. The native protein yielded 14 peptides after digestion, whereas only two large peptides and a tetrapeptide, Asn-Tyr-Pro-Lys, were released from the cross-linked protein (i.e., cleavage occurs only at residues Lys88 and Lys92). Using gel filtration, the two peptides were found to co-elute as a single species (15 kD), which represent a noncovalent complex of the amino terminal and C-terminal portions of the molecule. Further analysis of the modified protein by peptide mapping under denaturing conditions and by FAB MS analysis showed that Glu111 and Lys138 were internally cross-linked. The cross-linked protein had bioactivity (T-cell proliferation), fluorescence, and circular dichroism spectra similar to native IL-1β. In contrast, while having similar secondary structure, the digested cross-linked protein had less than 1% of T-cell proliferative activity of the undigested protein. These data show that the structural integrity surrounding and perhaps including the Asn-Tyr-Pro-Lys region may be crucial for the biological activity of rIL-1β and may be important for the binding of IL-1 to its receptor.

Key words

Interleukin 1β cross-linked protein biochemical characterization chemical modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auron, P. E., Webb, A. C., Rosenwasser, L. J., Mucci, S. F., Rich, A., Wolff, S. M., and Dinarello, C. A. (1984).Proc. Natl. Acad. Sci. USA 81, 7907–7911.Google Scholar
  2. Black, R. A., Kronheim, S. R., Cantrell, M., Deeley, M. C., March, C. J., Prickett, K. S., Wignall, J., Conlon, P. J., Cosman, D., Hopp, T. P., and Mochizuki, D. Y. (1988).J. Biol. Chem. 263, 9437–9442.Google Scholar
  3. Buechler, J. A., and Taylor, S. S. (1989).Biochemistry 28, 2065–2070.Google Scholar
  4. Carter, D. B., Curry, K. A., Tomich, C.-S. C., Yem, A. W., Deibel, M. R., Tracey, D. E., Paslay, J. W., Carter, J. B., Theriault, N. Y., Harris, P. K. W., Reardon, I. M., Zurcher-Neely, H., Heinrikson, R. L., Clancy, L. L., Muchmore, S. W., Watenpaugh, K. D., and Einspahr, H. M. (1988).Proteins Struct. Funct. Genet. 3, 121–129.Google Scholar
  5. Craig, S., Pain, R. H., Schmeissner, U., Virden, R., and Wingfield, P. T. (1989).Int. J. Peptide Protein Res. 33, 256–262.Google Scholar
  6. Craig, S., Schmeissner, U., Wingfield, P., and Pain, R. H. (1987).Biochemistry 26, 3570–3576.Google Scholar
  7. Dower, S. K., and Urdal, D. L. (1987).Immunol. Today 8, 46–51.Google Scholar
  8. Epps, D. E., Yem, A. W., and Deibel, M. R., Jr. (1989).Arch. Biochem. Biophys. 275, 82–91.Google Scholar
  9. Finzel, B. C., Clancy, L. L., Holland, D. R., Muchmore, S. W., Watenpaugh, K. D., and Einspahr, H. M. (1989).J. Mol. Biol. 209, 779–791.Google Scholar
  10. Geren, L., Tuls, J., O'Brien, P., Millett, F., and Peterson, J. A. (1986).J. Biol. Chem. 261, 15,491–15,495.Google Scholar
  11. Gillis, S., and Mizel, S. B. (1981).Proc. Natl. Acad. Sci. USA 78, 1133–1138.Google Scholar
  12. Holbrook, J. B., and Leaver, A. G. (1976).Anal. Biochem. 75, 634–636.Google Scholar
  13. Huang, J. J., Newton, R. C., Horuk, R., Matthew, J. B., Covington, M., Pezzella, K., and Lin, Y. (1987).Febs Lett. 223, 294–298.Google Scholar
  14. Jobling, S. A., Auron, P. E., Gurka, G., Webb, A. C., MacDonald, B., Rosenwasser, L. J., and Gehrke, L. (1988).J. Biol. Chem. 263, 16,372–16,378.Google Scholar
  15. Kamogashira, T., Masui, Y., Ohmoto, Y., Hirato, T., Nagamura, K., Mizuno, K., Hong, Y.-M., Kikumoto, Y., Nakai, S., and Hirai, Y. (1988).Biochem. Biophys. Res. Commun. 150, 1106–1114.Google Scholar
  16. Kamogashira, T., Sakaguchi, M., Ohmoto, Y., Mizuno, K., Shimizo, R., Nagamura, K., Nakai, S., Masui, Y., and Hirai, Y. (1988).J. Biochem. 104, 837–840.Google Scholar
  17. Kikumoto, Y., Hong, Y.-M., Nishida, T., Nakai, S., Masui, Y., and Hirai, Y. (1987).Biochem. Biophys. Res. Commun. 147, 315–321.Google Scholar
  18. Krakauer, T. (1986).CRC Crit. Rev. Immunol. 6, 213–244.Google Scholar
  19. Laemmli, U. K. (1970).Nature 227, 680–685.Google Scholar
  20. Lillquist, J. S., Simon, P. L., Summers, M., Jonak, Z., and Young, P. R. (1988).J. Immunology 141, 1975–1981.Google Scholar
  21. MacDonald, H. R., Wingfield, P., Schmeissner, U., Shaw, A., Clore, G. M., and Gronenborn, A. M. (1986).Febs Lett. 209, 295–298.Google Scholar
  22. March, C. J., Mosley, B., Larsen, A., Cerretti, D. P., Braest, G., Price, V., Gillis, S., Henney, C. S., Kronheim, S. R., Grabstein, K., Conlon, P. J., Hopp, T. P., and Cosman, D. (1985).Nature 315, 641–647.Google Scholar
  23. Mizel, S. B., Oppenheim, J. J., and Rosenstreich, D. L. (1978).J. Immunology 120, 1497–1503.Google Scholar
  24. Mosley, B., Dower, S. K., Gillis, S., and Cosman, D. (1987).Proc. Natl. Acad. Sci. USA 84, 4572–4576.Google Scholar
  25. Onishi, H., Maita, T., Matsuda, G., and Fujiwara, K. (1989).Biochemistry 28, 1905–1912.Google Scholar
  26. Oppenheim, J. J., Kovacs, E. J., Matsushima, K., and Durum, S. K. (1986).Immunol. Today 7, 45–56.Google Scholar
  27. Priestle, J. P., Schar, H.-P., and Grutter, M. G. (1988).EMBO J. 7, 339–343.Google Scholar
  28. Speziale, S. C., Ginsberg, L. C., and Paslay, J. W. (1989).Lymphokine Res. 8, 1–8.Google Scholar
  29. Tarr, G., Black, S. D., Fujita, V. S., and Coon, M. J. (1983).Proc. Natl. Acad. Sci. USA 80, 6552–6559.Google Scholar
  30. Wessel, D., and Flugge, U. I. (1984).Anal. Biochem. 138, 141–143.Google Scholar
  31. Wingfield, P., Graber, P., Movva, N. R., Gronenborn, A. M., and MacDonald, H. R. (1987).Febs Lett. 215, 160–164.Google Scholar
  32. Wingfield, P., Graber, P., Shaw, A. R., Gronenborn, A. M., Clore, G. M., and MacDonald, H. R. (1989).Eur. J. Biochem. 179, 565–571.Google Scholar
  33. Yem, A. W., Richard, K. A., Staite, N. D., and Deibel, M. R., Jr. (1988).Lymphokine Res. 7, 85–92.Google Scholar
  34. Yem, A. W., Zurcher-Neeley, H. A., Richard, K. A., Staite, N. D., Heinrikson, R. L., and Deibel, M. R., Jr. (1989).J. Biol. Chem. 264, 17,691–17,697.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Anthony W. Yem
    • 1
  • David M. Guido
    • 1
  • W. Rodney Mathews
    • 1
  • Nigel D. Staite
    • 1
  • Karen A. Richard
    • 1
  • Mark D. Prairie
    • 1
  • William C. Krueger
    • 1
  • Dennis E. Epps
    • 1
  • Martin R. DeibelJr.
    • 1
  1. 1.The Upjohn CompanyKalamazoo

Personalised recommendations