Journal of Protein Chemistry

, Volume 12, Issue 1, pp 23–31 | Cite as

Interaction between cystatin-derived peptides and papain

  • Gilles Lalmanach
  • Johan Hoebeke
  • Thierry Moreau
  • Michèle Brillard-Bourdet
  • Michèle Ferrer-Di Martino
  • Francisco Borras-Cuesta
  • Francis Gauthier


The interaction between papain and synthetic peptides which tentatively mimic cystatin surfaces was investigated both enzymatically and structurally. Measurements of dissociation equilibrium constants for the interaction of papain with these peptides modified by successive deletions or substitutions demonstrated that the QVVAG segment, which is highly conserved throughout members of the cystatin superfamily, is essential for the interaction. The glycylcontaining (N-terminal) fragments and PW-containing (C-terminal) fragments were found to be of lesser importance, since each could be deleted without significantly modifying the interaction. These fragments improved the stability of the interacting QVVAG region, which appeared to be substrate-like in all peptides tested, as it was cleaved at the A-G bond upon peptide-papain interaction. Replacement of the A residue at the scissile bond of the QVVAG by a blocked cysteinyl residue reduced the rate of cleavage of the susceptible bond and therefore shifted the resulting peptide from a substrate to an inhibitor. Derivatization of this substituted peptide at its N- and C-terminal ends by fluoresceinyl groups resulted in a dramatic decrease in theKi to 0.5 µM. This improvement in the inhibitory properties of the substituted and derivatized peptides was correlated with structural changes as analyzed by molecular dynamic calculations. The results were compared to those proposed for the mechanism of inhibition by natural inhibitors of the cystatin superfamily.

Key words

Cystain cysteine proteinase molecular dynamics peptide synthesis proteinase inhibitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, K., Emori, T., Kondo, H., Arai, S., and Suzuki, K. (1988).J. Biol. Chem. 263, 7655–7659Google Scholar
  2. Abrahamson, M., Ritonja, A., Brown, M. A., Grubb, A., Machleidt, W., and Barrett, A. J. (1987).J. Biol. Chem. 262, 9688–9694.Google Scholar
  3. Abrahamson, M., Mason, R. W., Hansson, H., Buttle, D. J., Grubb, A., and Ohlsson, K. (1991).Biochem. J. 273, 621–626.Google Scholar
  4. Anastasi, A., Brown, M. A., Kembhavi, A. A., Nicklin, M. J. H., Sayers, C. A., Sunter, D. C., and Barrett, A. J. (1983).Biochem. J. 211, 129–138.Google Scholar
  5. Arai, S., Watanabe, H., Kondo, H., Emori, Y., and Abe, K. (1991).J. Biochem. (Tokyo)109, 294–298.Google Scholar
  6. Barrett, A. J. (1987).Trends Biochem. Sci. 12, 193–196.Google Scholar
  7. Björk, I., Alriksson, E., and Ylinenjärvi, K. (1989).Biochemistry 28, 1568–1573.Google Scholar
  8. Björk, I., and Ylinenjärvi, K. (1989).Biochem. J. 260, 61–68.Google Scholar
  9. Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshikov, A., Brzin, J., Kos, J., and Turk, V. (1988).EMBO J. 7, 2593–2599.Google Scholar
  10. Bode, W., Engh, R., Musil, D., Laber, B., Stubbs, M., Huber, R., and Turk, V. (1990).Biol. Chem. Hoppe-Seyler 371, 111–118.Google Scholar
  11. Borras-Cuesta, F., Golvano, J., Sarobe, P., Lasarte, J. J., Prieto, P., Szabo, A., Guillaume, J. L., and Guillet, J. G. (1991).Biologicals 19, 187–190.Google Scholar
  12. Cardin, A. D., Demeter, D. A., Weintraub, H. J. R., and Jackson, R. L. (1991).Methods Enzymol. 203, 556–583.Google Scholar
  13. Carrell, R. W., and Boswell, D. R. (1986). InProteinase Inhibitors (Barrett, A. J., and Salvesen, G., eds.), Elsevier, Amsterdam, pp. 403–420.Google Scholar
  14. Dixon, M. (1953).Biochem. J. 55, 170–171.Google Scholar
  15. Grubb, A. (1988).Acta Ortho. Scand. 59, 63–65.Google Scholar
  16. Grubb, A., Abrahamson, M., Olafsson, I., Trojnar, J., Kasprzykowska, R., Kasprzykowski, F., and Grzonka, Z. (1990).Biol. Chem. Hoppe-Seyler 371, 137–144.Google Scholar
  17. Jerala, R., Trstenjak-Prebanda, M., Kroon-Zitko, L., Lenarcic, B., and Turk, V. (1990).Biol. Chem. Hoppe-Seyler 371, 157–160.Google Scholar
  18. Kamphuis, I. G., Kalk, K. H., aSwarte, B. A., and Drenth, J. (1984).J. Mol. Biol. 179, 233–256.Google Scholar
  19. Koga, H., Yamada, H., Nishimura, Y., Kato, K., and Imoto, T. (1990).J. Biochem. (Tokyo)108, 976–982.Google Scholar
  20. Lalmanach, G., Hoebeke, J., Moreau, T., Ferrer-Di Martino, M., and Gauthier, F. (1992).J. Immunol. Methods 149, 147–205.Google Scholar
  21. Laskowski, M., and Kato, J. (1980).Ann. Rev. Biochem. 49, 593–626.Google Scholar
  22. Lindahl, P., Alriksson, E., Jörnvall, H., and Björk, I. (1988).Biochemistry 27, 5074–5082.Google Scholar
  23. Lowbridge, J., and Fruton, J. S. (1974).J. Biol. Chem. 249, 6754–6761.Google Scholar
  24. Machleidt, W., Thiele, U., Laber, B., Assfalg-Machleidt, I., Esterl, A., Wiegand, G., Kos, J., Turk, V., and Bode, W. (1989).FEBS Lett. 243, 234–238.Google Scholar
  25. Marks, N., Berg, M. J., and Danho, W. (1989).Peptides 10, 391–394.Google Scholar
  26. Marks, N., Berg, M. J., Makofsee, R. C., and Danho, W. (1990).Peptides 11, 679–682.Google Scholar
  27. Moreau, T., Gutman, N., Faucher, D., and Gauthier F. (1989).J. Biol. Chem. 264, 4298–4303.Google Scholar
  28. Moreau, T., Hoebeke, J., Lalmanach, G., Hattab, M., and Gauthier, F. (1990).Biochem. Biophys. Res. Commun. 167, 117–122.Google Scholar
  29. Müller-Esterl, W., Fritz, H., Kellermann, J., Lottspeich, F., Machleidt, W., and Turk, V. (1985).FEBS Lett. 191, 221–226.Google Scholar
  30. Nikawa, T., Towatari, T., Ike, Y., and Katunuma, N. (1989).FEBS Lett. 255, 309–314.Google Scholar
  31. Ohkubo, I., Kurachi, K., Takasawa, T., Shiokawa, H., and Sasaki, M. (1984).Biochemistry 23, 5691–5697.Google Scholar
  32. Previero, A., Coletti-Previero, M. A., and Cavadore, J. C. (1967).Biochem. Biophys. Acta 147, 453–461.Google Scholar
  33. Rawlings, N. D., and Barrett, A. J. (1960).J. Mol. Evol. 30, 60–71.Google Scholar
  34. Salvesen, G., Parkes, C., Abrahamson, M., Grubb, A., and Barrett, A. J. (1986).Biochem. J. 234, 429–434.Google Scholar
  35. Stubbs, M., Laber, B., Bode, W., Huber, R., Jerala, R., Lenarcic, B., and Turk, V. (1990).EMBO J. 9, 1939–1947.Google Scholar
  36. Teno, N., Tsuboi, S., Itoh, N., Okamoto, H., and Okada, Y. (1987).Biochem. Biophys. Res. Commun. 143, 749–752.Google Scholar
  37. Thiele, U., Assfalg-Machleidt, W., and Auerswald, E. A. (1990).Biol. Chem. Hoppe-Seyler 371, 125–136.Google Scholar
  38. Turk, V., and Bode, W. (1991).FEBS Lett. 285, 213–219.Google Scholar
  39. Twining, S. S. (1984).Anal. Biochem. 143, 30–34.Google Scholar
  40. Vogel, R., Assfalg-Machleidt, I., Esterl, A., Machleidt, W., and Müller Esterl, W. (1988).J. Biol. Chem. 263, 12,661–12,668.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Gilles Lalmanach
    • 1
  • Johan Hoebeke
    • 1
  • Thierry Moreau
    • 1
  • Michèle Brillard-Bourdet
    • 1
  • Michèle Ferrer-Di Martino
    • 1
  • Francisco Borras-Cuesta
    • 2
  • Francis Gauthier
    • 1
  1. 1.Faculty of MedicineURA CNRS 1334, University François RabelaisToursFrance
  2. 2.Faculty of Medicine, Department of Internal MedicineUniversity of NavarraPamplonaSpain

Personalised recommendations