Journal of Protein Chemistry

, Volume 12, Issue 1, pp 15–22 | Cite as

PectinaseAspergillus sp. polygalacturonase: Multiplicity, divergence, and structural patterns linking fungal, bacterial, and plant polygalacturonases

  • Eva Stratilová
  • Oskar Markovič
  • Dagmar Škrovinová
  • Lubomíra Rexová-Benková
  • Hans Jörnvall


Nine forms ofAspergillus sp. polygalacturonase were purified from a commercial preparation of pectinase Rohament P using chromatographies and chromatofocusing. Individual forms differ in isoelectric point, and at least five differ in structure; whereas molecular masses and enzymatic properties are largely identical. Four forms with freea-amino groups have identical start positions but internal amino acid replacements. Therefore, the multiplicity is derived from true heterogeneities and not from N-terminal truncations. Peptide analysis of the major polygalacturonase reveals large variations toward the enzyme from otherAspergillus species (72–75% residue differences, depending on species) but additional similarities with the enzyme from bacterial and plant sources (only 66–71% residue differences toward theErwinia, tomato, and peach enzymes). Combined with previous data, these facts show polygalacturonase to exhibit extensive multiplicity and much variability, but also unexpected similarities between distantly related forms with conserved functional properties

Key words

Polygalacturonase enzyme multiplicity homology variability conservation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, S. M., and Crouch, M. L. (1990).The Plant Cell 2, 263–274.Google Scholar
  2. Bussink, H. J. D., Kester, H. C. M., and Visser, J. (1990).FEBS Lett. 273, 127–130.Google Scholar
  3. Bussink, H. J. D., Brouwer, K. B., de Graaf, L. H., Kester, H. C. M., and Visser, J. (1991a).Curr. Genet. 20, 301–307.Google Scholar
  4. Bussink, H. J. D., Buxton, F. P., and Visser, J. (1991b).Curr. Genet. 19, 467–474.Google Scholar
  5. Collmer, A., and Keen, N. T. (1986).Ann. Rev. Phytopathol. 24, 383–409.Google Scholar
  6. Cooper, R. M. (1983). InBiochemical Plant Pathology (Callow, J. A., ed.), John Wiley & Sons, New York, pp. 101–135.Google Scholar
  7. El-Refai, A. A., Atta, M. B., and Harras, A. M. (1987).Chem. Mikrobiol. Technol. Lebensm. 11, 65–73.Google Scholar
  8. Grierson, D., Tucker, G. A., Keen, J., Ray, J., Bird, C. R., and Schuch, W. (1986).Nucl. Acids Res. 14, 8595–8603.Google Scholar
  9. Hinton, J. C. D., Gill, D. R., Lalo, D., Plastow, G. S., and Salmond, G. P. C. (1990).Mol. Microbiol. 4, 1029–1036.Google Scholar
  10. Huang, J., and Schell, M. A. (1990).J. Bacteriol. 172, 3879–3887.Google Scholar
  11. Jeffery, J., Cederlund, E., and Jörnvall, H. (1984).Eur. J. Biochem. 140, 7–16.Google Scholar
  12. Keon, J. P. R., and Waksman, G. (1990).Appl. Environm. Microbiol. 56, 2522–2528.Google Scholar
  13. Kester, H. C. M., and Visser, J. (1990).Biotechnol. Appl. Biochem. 12, 150–160.Google Scholar
  14. Koller, A., and Neukom, H. (1964).Biochim. Biophys. Acta 83, 366–367.Google Scholar
  15. Kramer, M., Sheehy, R. E., and Hiatt, W. R. (1989).Trends Biotechnol. 7, 191–194.Google Scholar
  16. Laemmli, U. K., and Favre, M. (1973).J. Mol. Biol. 80, 575–599.Google Scholar
  17. Lee, E., Speirs, J., Gray, J., and Brady, C. J. CSIRO Division of Horticulture (1990).Plant Cell Environ. 13, 513–521.Google Scholar
  18. Markovič, O., Mislovičová, D., Biely, P., and Heinrichová, K. (1992).J. Chromatogr. 603, 243–246.Google Scholar
  19. Moshrefi, M., and Luh, B. S. (1983).Eur. J. Biochem. 135, 511–514.Google Scholar
  20. Prusky, D., Gold, S., and Keen, N. T. (1989).Phys. Mol. Plant Pathol. 35, 121–133.Google Scholar
  21. Radola, B. J. (1980).Electrophoresis 1, 43–56.Google Scholar
  22. Rexová-Benková, L., and Markovič, O. (1976).Adv. Carbohydr. Chem. Biochem. 33, 323–385.Google Scholar
  23. Rexová-Benková, L., and Mračková, M. (1978).Biochim. Biophys. Acta 523, 162–169.Google Scholar
  24. Rexová-Benková, L. (1990).Collect. Czech. Chem. Commun. 55, 1389–1395.Google Scholar
  25. Ruttkowski, E., Labitzke, R., Khanh, N. Q., Löffler, F., Gottschalk, M., and Jany, K. D. (1990).Biochim. Biophys. Acta 1087, 104–106.Google Scholar
  26. Saarilahti, H. T., Heino, P., Pakkanen, R., Kalkkinen, N., Palva, I., and Palva, E. T. (1990).Mol. Microbiol. 4, 1037–1044.Google Scholar
  27. Schell, M. A., Roberts, D. P., and Denny, T. P. (1988).J. Bacteriol. 170, 4501–4508.Google Scholar
  28. Sheehy, R. E., Pearson, J., Brady, C. J., and Hiatt, W. R. (1987).Mol. Gen. Genet. 208, 30–36.Google Scholar
  29. Somogyi, M. (1952).J. Biol. Chem. 195, 19–23.Google Scholar
  30. Tucker, G. A., Robertson, N. G., and Grierson, D. (1981).Eur. J. Biochem. 115, 87–90.Google Scholar
  31. Urbanek, H., and Zalewska-Sobczak, J. (1975).Biochim. Biophys. Acta 377, 402–409.Google Scholar
  32. Waksman, G., Keon, J. P. R., and Turner, G. (1991).Biochim. Biophys. Acta 1073, 43–48.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Eva Stratilová
    • 1
    • 2
  • Oskar Markovič
    • 1
  • Dagmar Škrovinová
    • 1
  • Lubomíra Rexová-Benková
    • 1
  • Hans Jörnvall
    • 2
  1. 1.Institute of ChemistrySlovak Academy of SciencesBratislavaCzechoslovakia
  2. 2.Department of Chemistry IKarolinska InstitutetStockholmSweden

Personalised recommendations