Journal of Protein Chemistry

, Volume 11, Issue 3, pp 321–331 | Cite as

Sequence and structural relationships in the cytokine family

  • Parthasarathy Manavalan
  • Deborah L. Swope
  • Raymond M. Withy


The sequences of nine different cytokines, growth hormone, and prolactin have been aligned and their secondary structure predicted. The alignment reveals that each exon has a characteristic sequence pattern shared by all cytokines. The most striking sequence similarity is observed in exon 4, where the residue pair Phe-Leu is conserved in many cytokines. In addition, there are discreet homologous regions between two specific growth factors, including a high degree of homology between granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (IL-3). The secondary structure analysis predicts that exon 3 of all cytokines has an antiparallel helix-turn-helix motif, which is likely to form the central helical segments of a four α-helical bundle-type structure. Based on the secondary structure and the disulfidebonding pattern, the topological connectivity for a number of cytokines has been predicted.

Key words

Cytokines sequence homology secondary structure folding topology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Meguid, S. S., Shieh, H.-S., Smith, W. W., Dayringer, H. E., Violand, B. N., and Bentle, L. A. (1987).Proc. Natl. Acad. Sci. USA 84, 6434–6437.Google Scholar
  2. Arai, K.-I., Lee, F., Miyajima, A., Miyatake, S., Arai, N., and Yokota, T. (1990).Annu. Rev. Biochem. 59, 783–836.Google Scholar
  3. Azuma, C., Tanabe, T., Konishi, M., Kinashi, T., Noma, T., Matsuda, F., Yaoita, Y., Takatsu, K., Hammarstrom, L., Smith, C. I. E., Severinson, E., and Honjo, T. (1986).Nucl. Acids Res. 14, 9149–9158.Google Scholar
  4. Barta, A., Richards, R., Baxter, J. D., and Shine, J. (1981).Proc. Natl. Acad. Sci. USA 78, 4853–4871.Google Scholar
  5. Baxan, J. F. (1990).Immunol. Today 11, 350–354.Google Scholar
  6. Bazan, J. F. (1989).Biochem. Biophys. Res. Comm. 164, 788.Google Scholar
  7. Brandhuber, B. J., Boone, T., Kenney, W. C., and McKay, D. B. (1987).Science 238, 1707–1709.Google Scholar
  8. Carr, C., Aykent, S., Kimack, N. M., and Levine, A. D. (1991).Biochemistry 30, 1515–1523.Google Scholar
  9. Chou, P.-Y., and Fasman, G. D. (1978).Annu. Rev. Biochem. 47, 251–276.Google Scholar
  10. Chou, K.-C., Maggiora, G. M., Nemethy, G., and Scheraga, H. A. (1988).Proc. Natl. Acad. Sci. USA 85, 4295–4299.Google Scholar
  11. Clark-Lewis, I., Lopez, A. F., Vadas, M., Schrader, J. W., Hood, L. E., and Kent, S. B. H. (1987). InMolecular Basis for Lymphokine Action (Webb, D., Pierce, C., and Cohen, S.), Humana, Clifton, New Jersey, pp. 339–351.Google Scholar
  12. Cohen, F. E., Abarbanel, R. M., Kuntz, I. D., and Fletterick, R. J. (1986).Biochemistry 25, 266–275.Google Scholar
  13. Cooke, N. E., Coit, D., Shine, J., Baxter, J. D., and Martial, J. A. (1981).J. Biol. Chem. 256, 4007–4016.Google Scholar
  14. Cunningham, B. C., Henner, D. J., and Wells, J. A. (1990).Science 247, 1461–1465.Google Scholar
  15. Cunningham, B. C., and Wells, J. A. (1991).Proc. Natl. Acad. Sci. USA 88, 3407–3411.Google Scholar
  16. D'Andrea, A. D., Fasman, G. D., and Lodish, H. F. (1989).Cell 58, 1023–1024.Google Scholar
  17. DeNoto, F. M., Moore, D. D., and Goodman, H. M. (1981).Nuc. Acids. Res. 9, 3719–3730.Google Scholar
  18. Devereux, J. R., Haeberli, P., and Smithies, O. (1984).Nucl. Acids Res. 12, 387–395.Google Scholar
  19. Eisenberg, S. P., Brewer, M. T., Verderber, E., Heimdal, P., Brandhuber, B. J., and Thompson, R. C. (1991).Proc. Natl. Acad. Sci. USA 88, 5232–5236.Google Scholar
  20. Finzel, B. C., Clancy, L. L., Holland, D. R., Muchmore, S. W., Watenpaugh, K. D., and Einspahr, H. M. (1989).J. Mol. Biol. 209, 779–791.Google Scholar
  21. Finzel, B. C., Weber, P. C., Hardman, K. D., and Salemme, F. R. (1985).J. Mol. Biol. 186, 627–643.Google Scholar
  22. Fung, M. C., Hapel, A. J., Ymer, S., Cohen, D. R., Johnson, R. M., Campbell, H. D., and Young, I. G. (1984).Nature 307, 233–237.Google Scholar
  23. Garnier, J., Osguthorpe, D. J., and Robson, B. (1978).J. Mol. Biol. 120, 97–120.Google Scholar
  24. Goodwin, R. G., Friend, D., Ziegler, S. F., Jerzy, R., Falk, B. A., Gimpel, S., Cosman, D., Dower, S. K., March, C. J., Namen, A. E., and Park, L. S. (1990).Cell 60, 941–951.Google Scholar
  25. Goodwin, R. G., Lupton, S., Schmierer, A., Hjerrild, K. J., Jerzy, R., Clevenger, W., Gillis, S., Cosman, D., and Namen, A. E. (1989).Proc. Natl. Acad. Sci. USA 86, 302–306.Google Scholar
  26. Gough, N. M., Gough, J., Metcalf, D., Kelso, A., Grail, D., Nicola, N. A., Burgess, A. W., and Dunn, A. R. (1984).Nature 309, 763–767.Google Scholar
  27. Graves, B. J., Hatada, M. H., Hendrickson, W. A., Miller, J. K., Madison, V. S., and Satow, Y. (1990).Biochemistry 29, 2679–2684.Google Scholar
  28. Hirano, T., Yasukawa, K., Harada, H., Taga, T., Watanabe, Y., Matsuda, T., Kashiwamura, S.-I., Nakajima, K., Koyama, K., Iwamatsu, A., Tsunasawa, S., Sakiyama, F., Matsui, H., Takahara, Y., Tanaguchi, T., and Kishimoto, T. (1986).Nature 324, 73–76.Google Scholar
  29. Jacobs, K., Shoemaker, C., Rudersdorf, R., Neill, S. D., Kaufmann, R. J., Mufson, A., Seehra, J., Jones, S. S., Hewick, R., Fritsch, E. F., Kawakita, M., Shimizu, T., and Miyake, T. (1985).Nature 313, 806–810.Google Scholar
  30. Kashima, N., Nishi-Takaoka, C., Fujita, T., Taki, S., Yamada, G., Hamuro, J., and Taniguchi, T. (1985).Nature 313, 402–404.Google Scholar
  31. Kaushansky, K., Brown, C. B., and O'Hara, P. J. (1990).Int. J. Cell Cloning 8 (Suppl. 1), 26–34.Google Scholar
  32. Kinashi, T., Harada, N., Severinson, E., Tanabe, T., Sideras, P., Konishi, M., Azuma, C., Tominaga, A., Bergstedt-Lindqvist, S., Takahashi, M., Matsuda, F., Yaoita, Y., Takatsu, K., and Honjo, T. (1986).Nature 324, 70–73.Google Scholar
  33. Kruttgen, A., Rose-John, S., Moller, C., Wroblowski, B., Wollmer, A., Mullberg, J., Hirano, T., Kishimoto, T., and Heinrich, P. (1990).FEBS Lett. 262, 323–326.Google Scholar
  34. Lai, P.-H., Everett, R., Wang, F.-F., Arakawa, T., and Goldwasser, E. (1986).J. Biol. Chem. 261, 3116–3121.Google Scholar
  35. Lederer, F., Glatigny, A., Bethge, P. H., Bellamy, H. D., and Mathews, F. S. (1981).J. Mol. Biol. 148, 427–448.Google Scholar
  36. Lee, F., Yokota, T., Otsuka, T., Meyerson, P., Villaret, D., Coffman, R., Mosmann, T., Rennick, D., Roehm, N., Smith, C., Zlotnik, A., and Arai, K.-I. (1986).Proc. Natl. Acad. Sci. USA 83, 2061–2065.Google Scholar
  37. Leutz, A., Damm, K., Sterneck, E., Kowenz, E., Ness, S., Frank, R., Gausepohl, H., Pan, Y.-C. E., Smart, J., Hayman, M., and Graf, T. (1989).EMBO J. 8, 175–181.Google Scholar
  38. Lim, V. I. J. (1974).J. Mol. Biol. 88, 857–894.Google Scholar
  39. Lin, F.-K., Suggs, S., Lin, C.-H., Browne, J. K., Smalling, R., Egrie, J. C., Chen, K. K., Fox, G. M., Martin, F., Stabinsky, Z., Badraw, S. M., Lai, P.-H., and Goldwasser, E. (1985).Proc. Natl. Acad. Sci. USA 82, 7580–7584.Google Scholar
  40. Linzer, D. I. H., and Nathans, D. (1984).Proc. Natl. Acad. Sci. USA 81, 4255–4259.Google Scholar
  41. Lokker, N. A., Zenke, G., Strittmatter, U., Fragg, B., and Movva, N. R. (1991).EMBO J. 10, 2125–2131.Google Scholar
  42. Lu, H. S., Boone, T. C., Souza, L. M., and Lai, P.-H. (1989).Arch. Biochem. Biophys. 268, 81–92.Google Scholar
  43. Lupton, S. D., Gimpel, S., Jerzy, R., Brunton, L. L., Hjerrild, K. A., Cosman, D., and Goodwin, R. G. (1990).J. Immunol. 144, 3592–3601.Google Scholar
  44. Mathews, F. S., Argos, P., and Levine, M. (1972).Cold Spring Harbor Symp. Quant. Biol. 36, 387–395.Google Scholar
  45. McDonald, J. D., Lin, F.-K., and Goldwasser, E. (1986).Mol. Cell. Biol. 6, 842–848.Google Scholar
  46. Metcalf, D. (1989).Nature 339, 27–30.Google Scholar
  47. Mizel, S. B. (1989).FASEB J. 3, 2379–2388.Google Scholar
  48. Nagata, S., Tsuchiya, M., Asano, S., Kaziro, Y., Yamazaki, T., Yamamoto, O., Hirata, Y., Kubota, N., Oheda, M., Nomura, H., and Ono, M. (1986).Nature 319, 415–418.Google Scholar
  49. Nicola, N. A. (1989).Ann. Rev. Biochem. 58, 45–77.Google Scholar
  50. Nicola, N. A., and Metcalf, D. (1991).Cell 67, 1–4.Google Scholar
  51. Ono, M., Takayama, Y., Rand-Weaver, M., Sakata, S., Yasunaga, T., Noso, T., and Kawauchi, H. (1990).Proc. Natl. Acad. Sci. USA 87, 4330–4334.Google Scholar
  52. Page, G. S., Smith, S., and Goodman, H. M. (1981).Nuc. Acid. Res. 9, 2087–2104.Google Scholar
  53. Parry, D. A. D., Minasian, E., and Leach, S. J. (1988).J. Mol. Recogn. 1, 107–110.Google Scholar
  54. Paul, S. R., Bennett, F., Calvetti, J. A., Kelleher, K., Wood, C. R., O'Hara, Jr., R. M., Leary, A. C., Sibley, B., Clark, S. C., Williams, D. A., and Yang, Y.-C. (1990).Proc. Natl. Acad. Sci. USA 87, 7512–7516.Google Scholar
  55. Paul, W. E. (1989).Cell 57, 521–524.Google Scholar
  56. Presnell, S. R., and Cohen, F. E. (1989).Proc. Natl. Acad. Sci. USA 86, 6592–6596.Google Scholar
  57. Shanafelt, A. B., Johnson, K. E., and Kastelein, R. A. (1991).J. Biol. Chem. 266, 13,804–13,810.Google Scholar
  58. Shanafelt, A. B., and Kastelein, R. A. (1989).Proc. Natl. Acad. Sci. USA 86, 4872–4876.Google Scholar
  59. Taniguchi, T., Matsui, H., Fujita, T., Takaoka, C., Kashima, N., Yoshimoto, R., and Hamuro, J. (1983).Nature 302, 305–310.Google Scholar
  60. Tsuchiya, M., Asano, S., Kaziro, Y., and Nagata, S. (1986).Proc. Natl. Acad. Sci. USA 83, 7633–7637.Google Scholar
  61. Van Snick, J., Cayphas, S., Szikora, J.-P., Renauld, J.-C., Van Roost, E., Boon, T., and Simpson, R. J. (1988).Eur. J. Immunol. 18, 193–197.Google Scholar
  62. Ward, K. B., Hendrickson, W. A., and Klippenstein, G. L. (1975).Nature 257, 818–821.Google Scholar
  63. Windsor, W. T., Syto, R., Le, H. V., and Trotta, P. P. (1991).Biochemistry 30, 1259–1264.Google Scholar
  64. Wingfield, P., Graber, P., Moonen, P., Craig, S., and Pain, R. H. (1988).Eur. J. Biochem. 173, 65–72.Google Scholar
  65. Wong, G. G., Witek, J. S., Temple, P. A., Wilkens, K. M., Leary, A. C., Luxenberg, D. P., Jones, S. S., Brown, E. L., Kay, R. M., Orr, E. C., Shoemaker, C., Golde, D. W., Kaufman, R. J., Hewick, R. M., Wang, E. A., and Clark, S. C. (1985).Science 228, 810–815.Google Scholar
  66. Yang, Y.-C., Ciarletta, A. B., Temple, P. A., Chung, M. P., Kovacic, S., Witek-Giannotti, J. S., Leary, A. C., Kriz, R., Donahue, R. E., Wong, G. G., and Clark, S. C. (1986).Cell 47, 3–10.Google Scholar
  67. Yang, Y.-C., Ricciardi, S., Ciarletta, A., Calvetti, J., Kelleher, K., and Clark, S. C. (1989).Blood 74, 1880–1884.Google Scholar
  68. Yokota, T., Otsuka, T., Mosmann, T., Banchereau, J., DeFrance, T., Blanchard, D., DeVries, J. E., Lee, F., and Arai, K.-I. (1986).Proc. Natl. Acad. Sci. USA 83, 5894–5898.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Parthasarathy Manavalan
    • 1
  • Deborah L. Swope
    • 1
  • Raymond M. Withy
    • 1
  1. 1.Genzyme CorporationFramingham

Personalised recommendations