Skip to main content
Log in

Electrochemical oxidation of sulphite ions at graphite electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of sodium sulphite has been studied in aqueous sodium sulphate solution at two different graphite electrodes, one being of natural graphite (EC) and the other impregnated with phenol (ECK). The objective of the present work was to obtain some insight into the direct oxidation as well as the indirect oxidation, via produced oxygen radical species, of sulphite on non-metal electrodes. For this reason a study of the oxidation of sulphite in the concentration range between 0–0.10m in aqueous sodium sulphate using a batch electrochemical reactor, operating potentiostatically, was undertaken. The potential range was chosen between 1.0 to 2.5 V/SCE, and the concentration of the supporting electrolyte, sodium sulphate, was kept constant at 0.5m. A kinetic Tafel type law, considering irreversible behaviour for the direct sulphite oxidation and the mass transfer performance in regards to the experimental conditions were applied to predict the time variations of the sulphite conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A e :

area of electrode (m2)

a e :

specific area of electrode (m−1)

c i :

concentration of speciesi (M or mol m−3)

D :

diameter of impeller (m)

D :

diffusion coefficient (m2 s−1)

E :

electrode potential (V)

e :

distance between the two eccentric tubes (m)

E 0 :

equilibrium potential (V)

E 00 :

standard potential (V)

F :

Faraday constant (=96485 A s mol−1)

f :

ratio (F/RT) (V−1)

i :

current density averaged on the geometrical electrode surface (A m−2)

I :

total current (A)

i k :

kinetically limited current density (A m−2)

i lim :

limiting current density (A m−2)

i 0 :

exchange current density (A m−2)

i 00 :

specific exchange current density defined by Equation 11

k d :

average mass transfer coefficient (m s−1)

K w :

ionic product of water (M2)

L :

characteristical length (m)

m :

molality (mol kg−1)

n :

order of the electrochemical reaction, defined by Equation 11

n :

number of moles

N :

stirring rate (r.p.s.)

Q′ :

heat flow rate (W)

Q i :

charge passed for time segment i (A s)

Q max :

maximal charge consummable during electrolysis (A s)

R :

gas constant (8.314 J mol−1 K−1)

S :

form factor defined by Equation 17

r 1,r 2 :

radius of electrodes

T :

temperature (K)

X A :

conversion term of species A

V 1 :

liquid volume of the reactor (L or m3)

Re:

Reynolds number, defined as (ND 2/ν)

Sc:

Schmidt number, defined as (ν/D)

Sh:

Sherwood number, defined as (k d D/D)

α:

charge transfer coefficient

β:

exponent used in Equation 21

γ:

activity coefficient

η:

overpotential (V)

κ:

specific conductivity (Ω-1 m-1)

λ:

thermal conductivity (W m−1 K−1)

μ:

dynamic viscosity (Pa s)

ν:

kinematic viscosity (m2 s−1)

νe :

number of electrons involved

ρ:

specific gravity (kg m−3)

Фe :

current efficiency

A:

compound A

b:

bulk

e:

electrode

ferri:

relative to ferri/ferro system

sulphite:

relative to the sulphite/sulphate system

0:

initial condition

References

  1. G. N. Lewis, M. Randall and F. R. v. Bichowsky,J. Am. Chem. Soc. 40 (1918) 356.

    Google Scholar 

  2. W. D. Bancroft and J. E. Magoffin,57 (1935) 2561.

    Google Scholar 

  3. J. Coursier,Anal. Chim. Acta 7 (1952) 77.

    Google Scholar 

  4. W. D. Bancroft,Trans. Electrochem. Soc. 33 (1937) 195.

    Google Scholar 

  5. A. J. Bard, R. Parsons and J. Jordan, ‘Standard Potentials in Aqueous Solution’, IUPAC (1985), Chapter 6, pp. 93–125.

  6. S. Glasstone and A. Hickling,J. Chem. Soc. (1933) 829.

  7. S. I. Zhdanov, in ‘Encyclopedia of the Electrochemistry of the Elements’, vol. 4 (edited by A. J. Bard), Marcel Dekker, New York (1975), p. 333.

    Google Scholar 

  8. J. Kielland,J. Am. Chem. Soc. 59 (1937) 1675.

    Google Scholar 

  9. F. Hine, M. Yasuda and M. Iwata,J. Electrochem. Soc. 121 (1974) 749.

    Google Scholar 

  10. P. Drossbach and P. Schmittinger,Electrochim. Acta 11 (1966) 687.

    Google Scholar 

  11. G. N. Kokhanov and N. G. Milova, in ‘Modern aspects of electrochemistry’, (edited by B. E. Conway, J. Bockris and P. E. White), Plenum Press, New York (1989) p. 315.

    Google Scholar 

  12. L. I. Krishtalik and Z. A. Rotenberg,Elektrokhimiya 2 (1966) 351.

    Google Scholar 

  13. G. L. Klyanina and A. I. Shlygin,Russian Journal of Physical Chemistry 36(6) (1962) 692.

    Google Scholar 

  14. C. Furiet, ‘Surface réelle de métaux déployés’, Internal report LSGC/GTREP (1985).

  15. J. H. Karchmer, ‘The Analytical Chemistry of Sulfur and its Compounds’ Part I, Wiley-Interscience, Chichester Eng. (1968).

    Google Scholar 

  16. T. Hunger and F. Lapicque, to be published inElectrochim. Acta.

  17. T. Hunger, Internal Report, LSGC/GTREP (1989).

  18. P. Turq, R. Deloncle and M. Chemla,J. Chem. Phys. 68 (1971) 1305.

    Google Scholar 

  19. VDI-Wärmeatlas 4, ‘Stationäre Wärmeleitung’, EA4-EA9, VDI Verlag GmbH, Düsseldorf (1984).

  20. S. L. Gordon, J. S. Newman and C. W. Tobias,Ber. der. Bunsengesellschaft, Phys. Chem. 70 (1966) 414.

    Google Scholar 

  21. J. C. Bazan and A. J. Arvia,Electrochim. Acta 10 (1965) 1025.

    Google Scholar 

  22. L. J. J. Janssen,J. Applied Electrochem. 17 (1987) 1077 and references cited therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunger, T., Lapicque, F. & Storck, A. Electrochemical oxidation of sulphite ions at graphite electrodes. J Appl Electrochem 21, 588–596 (1991). https://doi.org/10.1007/BF01024846

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01024846

Keywords

Navigation