Journal of Protein Chemistry

, Volume 3, Issue 1, pp 121–130 | Cite as

Reductive alkylation of proteins

  • Gary E. Means


Amino groups of proteins can be alkylated by reaction with a variety of aldehydes or ketones in the presence of several different mild reducing agents. Because reductive alkylation occurs under mild conditions and has relatively minor effects on most proteins, it is becoming one of the more important methods for protein modification. This report discusses some of the recent applications of this reaction.

Key words

reductive alkylation aldehyde amines protein modification radiolabeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acharya, A. S., and Sussman, L. G. (1983).J. Biol. Chem. 258, 13761–13767.Google Scholar
  2. Ascoli, M., and Puett, D. (1974).Biochem. Biophys. Acta 371, 203–210.Google Scholar
  3. Baxter, C. S., and Byvoet, P. (1975).Biochem. Biophys. Res. Commun. 64, 514–518.Google Scholar
  4. Benne, R., and Hershey, J. W. B. (1978).J. Biol. Chem. 253, 3078–3087.Google Scholar
  5. Benne, R., Wong, C., Luedi, M., and Hershey, J. W. B. (1976).J. Biol. Chem. 251, 7675–7681.Google Scholar
  6. Benoiton, L., and Denault, J. (1966).Biochim. Biophys. Acta 113, 613–616.Google Scholar
  7. Beugnier, N., and Zanen, J. (1977).Biochim. Biophys. Acta 490, 225–234.Google Scholar
  8. Borch, R. F., Bernstein, M. D., and Durst, H. D. (1971).J. Am. Chem. Soc. 93, 2897–2904.Google Scholar
  9. Bradbury, J. H., and Brown, L. R. (1973).Eur. J. Biochem. 40, 565–576.Google Scholar
  10. Bradbury, J. H., and Brown, L. R. (1977),Eur. J. Biochem. 76, 573–582.Google Scholar
  11. Brown, L. R., and Bradbury, J. H. (1975).Eur. J. Biochem. 54, 219–227.Google Scholar
  12. Busby, T. F., Yu, S.-D., and Gan, J. C. (1977).Arch. Biochem. Biophys. 184, 276–275.Google Scholar
  13. Cabacungan, J. C., Ahmed, A. I., and Feeney, R. E. (1982).Anal. Biochem. 124, 272–278.Google Scholar
  14. Chiao, M. T., and Bezkorovainy, A. (1972).Biochim. Biophys. Acta 263, 60–69.Google Scholar
  15. De la Llosa, P., Durosay, M., Tetrin-Clary, C., and Jutisz, M. (1974).Biochim. Biophys. Acta 342, 97–104.Google Scholar
  16. DiDonato, A., Fanti, W. J., Acharya, A. S., and Manning, J. M. (1983).J. Biol. Chem. 258, 11890–11895.Google Scholar
  17. Dottavio-Martin, D., and Ravel, J. M. (1978).Anal. Biochem. 87, 562–565.Google Scholar
  18. Fretheim, K., Iwai, S., and Feeney, R. E. (1979).Int. J. Peptide Protein Res. 14, 451–456.Google Scholar
  19. Friedman, M., Williams, L. D., and Masri, M. S. (1974).Int. J. Peptide Protein Res. 6, 183–185.Google Scholar
  20. Galemback, F., Ryan, D. S., Whitaker, J. R., and Feeney, R. E. (1979).J. Agric. Food Chem. 25, 238–245.Google Scholar
  21. Geoghegan, K. F., Ybarra, D. M., and Feeney, R. E. (1979).Biochemistry 18, 5392–5399.Google Scholar
  22. Geoghegan, K., Cabacungan, J. C., Dixon, H. B. F., and Feeney, R. E. (1981).Int. J. Peptide Protein Res. 17, 345–352.Google Scholar
  23. Gerkin, T. A., Jentoft, J. E., Jentoft, N., and Dearborn, D. G. (1982).J. Biol. Chem. 257, 2894–2900.Google Scholar
  24. Gidley, M. J., and Sanders, J. K. M. (1982).Biochem. J. 203, 331–334.Google Scholar
  25. Gorecki, M., and Shalitin, Y. (1967).Biochem. Biophys. Res. Commun. 29, 189–193.Google Scholar
  26. Ho, H.-C., Wirch, E., and Wang, J. H.-C. (1973).Biochim. Biophys. Acta 317, 462–472.Google Scholar
  27. Imoto, T., Johnson, L. N., North, A. C. T., Philips, D. C., and Rupley, J. A. (1972). InThe Enzymes, 3rd ed. (Boyer, P. D., ed.), Academic Press, New York, Vol. 7, pp. 665–868.Google Scholar
  28. Jentoft, N., and Dearborn, D. G. (1979).J. Biol. Chem. 254, 4359–4365.Google Scholar
  29. Jentoft, N., and Dearborn, D. G. (1980).Anal. Biochem. 106, 186–190.Google Scholar
  30. Jentoft, N., and Dearborn, D. G. (1983).Meth. Enzymol. 91, 570–579.Google Scholar
  31. Jentoft, J. E., Jentoft, N., Gerken, T. A., and Dearborn, D. G. (1979).J. Biol. Chem. 254, 4366–4370.Google Scholar
  32. Jentoft, J. E., Gerken, T. A., Jentoft, N., and Dearborn, D. G. (1981).J. Biol. Chem. 256, 231–235.Google Scholar
  33. Jencks, W. P., and Regenstein, J. (1963). InHandbook of Biochemistry and Selected Data for Molecular Biology (Sober, H. A., ed.), Chemical Rubber Co., p. J-151.Google Scholar
  34. Khanh, N. Q., Lipecky, R., and Gassen, G. (1978).Biochim. Biophys. Acta 521, 476–483.Google Scholar
  35. King, T. P., Kochoumian, L., and Lichenstein, L. M. (1977).Arch. Biochem. Biophys. 178, 442–450.Google Scholar
  36. Lai, C. Y., Hoffee, P., and Horecker, B. L. (1967).Meth. Enzymol. 11, 667–671.Google Scholar
  37. Lin, Y., Means, G. E., Feeney, R. E. (1969).J. Biol. Chem. 244, 789–793.Google Scholar
  38. Means, G. E. (1977).Meth. Enzymol. 47, 469–478.Google Scholar
  39. Means, G. E., and Feeney, R. E. (1968a).Biochemistry 7, 2192–2201.Google Scholar
  40. Means, G. E., and Feeney, R. E. (1968b). InAbstracts of the 156th Meeting of the American Chemical Society, Biological Division Abstract No. 165.Google Scholar
  41. Means, G. E., and Feeney, R. E. (1971).Chemical Modification of Proteins, Holden-Day, San Francisco.Google Scholar
  42. Murdock, A. L., Grist, K. L., and Hirs, C. H. W. (1966).Arch. Biochem. Biophys. 114, 375–390.Google Scholar
  43. Obenrader, M. F., and Prouty, W. F. (1977).J. Biol. Chem. 252, 2866–2872.Google Scholar
  44. Ottesen, M., and Svensson, B. (1971).C. R. Trav. Lab. Carlsberg 38, 445–456.Google Scholar
  45. Rice, R. H., and Means, G. E. (1971).J. Biol. Chem. 246, 831–832.Google Scholar
  46. Rice, R. H., Means, G. E., and Brown, W. D. (1977).Biochim. Biophys. Acta 492, 316–321.Google Scholar
  47. Robinson, J. P., Picklesimer, J. B., and Puett, D. (1975).J. Biol. Chem. 250, 7435–7442.Google Scholar
  48. Shapiro, R., and Biordan, J. F. (1983).Biochemistry 22, 5315–5321.Google Scholar
  49. Shatsky, M. A., Ho, H. C., and Wang, J. H. C. (1973).Biochim. Biophys. Acta 303, 298–307.Google Scholar
  50. Sheffer, M. G., and Kaplan, H. (1979).Can. J. Biochem. 57, 489–496.Google Scholar
  51. Strausbauch, P. H., Kent, A. B., Hedrick, J. L., and Fischer, E. H. (1967).Meth. Enzymol. 11, 671–675.Google Scholar
  52. Szasz, J., Burns, R., and Sternlicht, H. (1982).J. Biol. Chem. 257, 3697–3704.Google Scholar
  53. Tack, B. F., Dean, J., Eilat, D., Lorenz, P. E., and Schechter, A. N. (1980).J. Biol. Chem. 255, 8842–8847.Google Scholar
  54. Tanford, C., and Hauenstein, J. D. (1956).J. Am. Chem. Soc. 78, 5287–5291.Google Scholar
  55. Tsai, C. S. (1977).Bioorg. Chem. 6, 117–125.Google Scholar
  56. Tsai, C. S. (1980).Bioorg. Chem. 9, 176–186.Google Scholar
  57. Tsai, C. S., Tsai, Y. H., Lauzon, G. and Cheng, S. T. (1974).Biochemistry 13, 440–443.Google Scholar
  58. Warren, S., Zerner, B., and Westheimer, F. H. (1966).Biochemistry 5, 817–823.Google Scholar
  59. Weisgraber, K. H., Innerarity, T. L., and Mahely, R. W. (1978).J. Biol. Chem. 253, 9053–0962.Google Scholar
  60. Winkelhake, J. L. (1977).J. Biol. Chem. 252, 1865–1868.Google Scholar
  61. Wu, H. L., and Means, G. E. (1981).Biotechnol. Bioeng. 23, 855–861.Google Scholar
  62. Zoltobrocki, M., Kim, J. C., and Plapp, B. V. (1974).Biochemistry 13, 899–903.Google Scholar
  63. Zschocke, R. H., Chiao, M. T., and Bezkorovainy, A. (1972).Eur. J. Biochem. 27, 145–152.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Gary E. Means
    • 1
  1. 1.Department of BiochemistryOhio State UniversityColumbus

Personalised recommendations