Journal of Protein Chemistry

, Volume 3, Issue 1, pp 49–62 | Cite as

The relationship of structure of glucoamylase and glucose oxidase to antigenicity

  • John H. Pazur
  • Yoshio Tominaga
  • Sherry Kelly


Glucoamylase and glucose oxidase fromAspergillus niger have been purified to homogeneity by chromatography on DEAE-cellulose and the purified enzymes have been used to investigate structural and antigenicity relationships. In structure, glucoamylase and glucose oxidase are glycoproteins containing 14% and 16% carbohydrate. Earlier methylation and reductive β-elimination results have shown that glucoamylase has an unusual arrangement of carbohydrate residues, with 20 single mannose units and 25 di-, tri-, or tetrasaccharide chains of mannose, glucose, and galactose, all attached O-glycosidically to serine and threonine residues of the protein moiety. The antigenicity of the glucoamylase has now been found to reside predominantly in the types and arrangement of the carbohydrate chains. Glucose oxidase contains mannose, galactose, and glucosamine in the N-acetyl form in the native enzyme, but the complete structure of the carbohydrate chains has not yet been determined. The antigenicity of this enzyme does not reside in the carbohydrate units, but rather in the polypeptide chains of the two subunits of the enzyme. Glucose oxidase can be dissociated into subunits by mercaptoethanol and sodium dodecyl sulfate treatment, while glucoamylase cannot be dissociated, but undergoes only an unfolding of the polypeptide chain under these conditions. The subunits of glucose oxidase do not react with the anti-glucose oxidase antibodies, but the unfolded molecule and peptide fragments produced from glucoamylase by cyanogen bromide cleavage do react with antiglucoamylase antibodies.

Key words

glucoamylase glucose oxidase glycoproteins DEAE-cellulose chromatography dissociation subunits antigenicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergmeyer, H.-U., and Bernt, E. (1965). InMethods of Enzymatic Analysis (Bergmeyer, H.-U., ed.), Verlag Chimie, Weinheim, West Germany, pp. 123–130.Google Scholar
  2. Commission on Biochemical Nomenclature (1973).Enzyme Nomenclature, Elsevier, Amsterdam, pp. 24–25.Google Scholar
  3. Davis, B. J. (1964).Ann. N.Y. Acad. Sci. 121, 404–427.Google Scholar
  4. DeVries, A. L., Komatsu, S. K., and Feeney, R. E. (1970).J. Biol. Chem. 245, 2901–2908.Google Scholar
  5. Dill, K., and Allerhand, A. (1979).J. Biol. Chem. 254, 4524–4531.Google Scholar
  6. Fairbanks, G., Steck, T. L., and Wallach, D. F. H. (1971).Biochemistry 10, 2606–2617.Google Scholar
  7. Freedberg, I. M., Levin, Y., Kay, C. M., McCubbin, W. D., and Katchalski-Katzir, E. (1975).Biochim. Biophys. Acta 391, 361–381.Google Scholar
  8. French, D., Knapp, D. W., and Pazur, J. H. (1950).J. Am. Chem. Soc. 72, 5148–5152.Google Scholar
  9. Guthrie, R. D. (1961).Adv. Carbohyd. Chem. Biochem. 16, 105–158.Google Scholar
  10. Hayashi, S., and Nakamura, S. (1981).Biochim. Biophys. Acta 657, 40–51.Google Scholar
  11. Lee, E. Y. C., and Whelan, W. J. (1966).Arch. Biochem. Biophys. 116, 162–167.Google Scholar
  12. MacAllister, R. V. (1979).Adv. Carbohyd. Chem. Biochem. 36, 15–56.Google Scholar
  13. Manjunath, P., and Raghavenda Rao, M. R. (1980).Ind. J. Biochem. Biophys. 17, 388–390.Google Scholar
  14. Marshall, J. J. (1980). InFood Process Engineering (Linko, P., and Larinkari, J., eds.), Applied Science Publications, London, Vol. 2, pp. 224–336.Google Scholar
  15. Martin, R. G., and Ames, B. N. (1961).J. Biol. Chem. 236, 1372–1379.Google Scholar
  16. Mayer, F. C., and Larner, J. (1959).J. Am. Chem. Soc. 81, 188–193.Google Scholar
  17. Montreuil, J. (1980).Adv. Carbohyd. Chem. Biochem. 37, 157–223.Google Scholar
  18. O'Malley, J. J., and Weaver, J. L. (1972).Biochemistry 11, 3527–3532.Google Scholar
  19. Pazur, J. H. (1953).J. Biol. Chem. 205, 75–80.Google Scholar
  20. Pazur, J. H. (1982).Carbohyd. Res. 107, 243–254.Google Scholar
  21. Pazur, J. H., and Ando, T. (1959).J. Biol. Chem. 234, 1966–1970.Google Scholar
  22. Pazur, J. H., and Aronson, N. N. (1972).Adv. Carbohyd. Chem. 27, 301–341.Google Scholar
  23. Pazur, J. H., and Kleppe, K. (1962).J. Biol. Chem.,237, 1002–1006.Google Scholar
  24. Pazur, J. H., and Kleppe, K. (1964).Biochemistry 3, 578–583.Google Scholar
  25. Pazur, J. H., Kleppe, K., and Anderson, J. S. (1962).Biochim. Biophys. Acta 65, 369–372.Google Scholar
  26. Pazur, J. H., Kleppe, K., and Ball, E. M. (1963).Arch. Biochem. Biophys. 103, 515–516.Google Scholar
  27. Pazur, J. H., Kleppe, K., and Cepure, A. (1965).Arch. Biochem. Biophys. 111, 351–357.Google Scholar
  28. Pazur, J. H., Knull, H. R., and Cepure, A. (1971).Carbohyd. Res. 20, 83–96.Google Scholar
  29. Pazur, J. H., Tominaga, Y., Forsberg, L. S., and Simpson, D. L. (1980).Carbohyd. Res. 84, 103–114.Google Scholar
  30. Pazur, J. H., Forry, K. R., Tominaga, Y., and Ball, E. M. (1981).Biochem. Biophys. Res. Commun. 100, 420–426.Google Scholar
  31. Peterson, E. A., and Sober, H. A. (1956).J. Am. Chem. Soc. 78, 741–755.Google Scholar
  32. Rhodes, M. B., Azari, P. R. and Feeney, R. E. (1958).J. Biol. Chem. 230, 399–408.Google Scholar
  33. Simon, J. P., Schorr, J. M. and Phillips, A. T. (1974).J. Biol. Chem. 249, 1993–1999.Google Scholar
  34. Svensson, B., Pedersen, T. G., Svendsen, I., Sakai, T., and Ottesen, M. (1982).Carlsberg Res. Commun. 47, 55–69.Google Scholar
  35. Underkofler, L. A. (1969).Adv. Chem. Ser. 95, 343–358.Google Scholar
  36. Weber, K., and Osborn, M., (1969).J. Biol. Chem. 244, 4406–4412.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • John H. Pazur
    • 1
  • Yoshio Tominaga
    • 1
  • Sherry Kelly
    • 1
  1. 1.Paul M. Althouse LaboratoryPennsylvania State UniversityUniversity Park

Personalised recommendations