Biotechnology Letters

, Volume 10, Issue 9, pp 637–642 | Cite as

Production of an extracellular lipase byBeauveria bassiana

  • Dwayne D. Hegedus
  • George G. Khachatourians
Article

Summary

The entomopathogenic fungus,Beauveria bassiana, produces an extracellular lipase when grown on a yeast extract-peptone-dextrose broth (YPD) medium. The time course of lipase production in the presence of olive oil was studied and which was shown to induce lipase. The addition of fatty acids, such as, myristic, palmitic, stearic, oleic, linoleic and arachidic acids, inhibited both growth and lipase production. Lipase production was also assessed on YPD and glucose minimal salts (GMS) medium. The addition of olive oil increased the lipase induction much more on, YPD than on the GMS. The effect of the divalent metal ions; iron, copper and magnesium, on lipase activity was studied. Whereas the iron and copper inhibited lipase activity, magnesium slightly increased lipase activity. Compounds containing a hydrolyzable ester group, such as Tweens, were found to inhibit lipase activity.

Keywords

Iron Copper Magnesium Lipase Bioorganic Chemistry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arends, I.M. (1971). Dissertation, Moscow Technological Institute of the food Industry, MoscowGoogle Scholar
  2. 2.
    Bidochka, M.J., Pfeifer, T.A., Khachatourians, G.G. (1987). Mycopathologia 99, 77–83.Google Scholar
  3. 3.
    Eitenmiller, R., Vakil, J. and Shahani, K.J. (1970). Food Science, 35, 130.Google Scholar
  4. 4.
    Ferron P. (1978). These de Doctorat d'Etat, Universite Pierre et Marie Carie, Paris VI,Google Scholar
  5. 5.
    Hackman, R.H. (1974). The Physiology of Insecta, 6, 215–270.Google Scholar
  6. 6.
    Iwai, M., Tsujisaka, J. and Fukumoto, J.J. (1970). Gen. Appl. Microbiol. 16, 81.Google Scholar
  7. 7.
    Koidsumi, K. (1957). Journal of Insect Physiology 1, 40–57.Google Scholar
  8. 8.
    Ksandopulo, G.B., Ruban, E.L. (1974). Microbiologia 43, 814–819.Google Scholar
  9. 9.
    Mates, A., Sudakevits, D. (1974). Appl. Bacteriol. 36, 219.Google Scholar
  10. 10.
    Mirza, Q. (1982). Can. J. Microbiol. 28, 618–622.Google Scholar
  11. 11.
    Ota, Y., Yamada, K. (1966). Agric. Biol. Chem. 30, 351.Google Scholar
  12. 12.
    Paris, S., Ferron, P. (1985). Mycopathologia 91, 109–116.Google Scholar
  13. 13.
    Saito, T., Aoki, J. (1983). Appl. Ent. Zool. 18, 225–233.Google Scholar
  14. 14.
    Smith, R.J., Grula, E.A. (1982). Journal of Invert. Path. 39, 15–22.Google Scholar
  15. 15.
    St. Leger, R.J., Charnley, A.K. (1986). J. Invert. Pathol. 47, 295–302.Google Scholar
  16. 16.
    Susomo, O. (1967). Chem. 31, 1357.Google Scholar
  17. 17.
    Susumo, O. (1969). Agric. Biol. Chem. 33, 729.Google Scholar
  18. 18.
    Tabak, M., Shchelokova, S. (1979). Microbiologia 48, 658–652.Google Scholar
  19. 19.
    Taro, O., Mamoru, S. (1969). Chem. and Pharm. Bull. 17, 1025.Google Scholar
  20. 20.
    Tsujisaka, J. (1972). Proc. IV Intern. Ferm. Symp. Kyoto.Google Scholar
  21. 21.
    Volkova, I.M., Lebedeva, Z.D. (1979). Microbiologia 48, 653–657.Google Scholar
  22. 22.
    Zvyagintseva, I.S. (1972). Microbiologia 41, 24.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Dwayne D. Hegedus
    • 1
  • George G. Khachatourians
    • 1
  1. 1.Bioinsecticide Research Laboratory, Department of Applied Microbiology and Food ScienceUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations