Journal of Mammalian Evolution

, Volume 1, Issue 3, pp 169–185 | Cite as

Phylogenetic relationships of the endemic malagasy carnivoreCryptoprocta ferox (Aeluroidea): DNA/DNA hybridization experiments

  • Géraldine Veron
  • François M. Catzeflis


A molecular and morphological study of several living aeluroid Carnivora was completed to evaluate the evolutionary relationships of the endemicCryptoprocta ferox, a carnivore living on the island of Madagascar. The molecular analysis, based on DNA/DNA hybridization experiments, suggests thatCryptoprocta is more closely related to the Herpestidae (as represented byMungos andIchneumia) than it is to the Viverrinae (Genetta), Paradoxurinae (Paguma, Paradoxurus), Felidae (Felis, Panthera), or Hyaenidae (Crocuta). Based on bootstrapping procedures applied to the individual DNA/DNA results, three branching patterns were observed which differ only by the relative position of the Felidae within the Aeluroidea. The amounts of genetic divergence measured between pairs of compared taxa have been transformed into millions years datings by the molecular clock concept, and this was done by establishing a molecular time scale based on the fossil record of the aeluroid Carnivora.

Key words

DNA/DNA hybridization skull morphology molecular phylogeny Madagascar Cryptoprocta Carnivora 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Beaumont, G. de (1964). Remarques sur la classification des Felidae.Ecol. Geol. Helv. 57 837–845.Google Scholar
  2. Bennett, E. T. (1833). Notice of a new genus ofViverridous Mammalia from Madagascar.Proc. Zool. Soc London 1833 46.Google Scholar
  3. Benveniste, R. E. (1985). The contributions of retroviruses to the study of mammalian evolution. In:Molecular Evolutionary Genetics, R. J. MacIntyre, ed., pp. 359–417, Plenum Press, New York.Google Scholar
  4. Blainville, H. de (1842).Osteographie ou description iconographique du squelette et du système dentaire des Mammifères récents ou fossiles, Vol. 2, Baillière, Paris.Google Scholar
  5. Bledsoe, A. H. (1987). Estimation of phylogeny from molecular distance data: The issue of variable rates.Auk 104 563–565.Google Scholar
  6. Bonner, T. I., Brenner, D. J., and Todaro, G. J. (1980). Evolution of DNA sequences has been retarded in Malagasy primates.Nature 286 420–423.Google Scholar
  7. Catzeflis, F. M. (1990). DNA hybridization as a guide to phylogenies: Raw data in muroid rodents. In:Evolution of Subterranean Mammals at the Organismal and Molecular Levels E. Nevo and O. A. Reig, eds., pp. 317–345, Wiley-Liss, New York.Google Scholar
  8. Catzeflis, F. (1991). Animal tissue collections for molecular genetics and systematics.Trend Ecol. Evol. (TREE) 6 168.Google Scholar
  9. Catzeflis, F. M., Sheldon, F. H., Ahlquist, J. E., and Sibley, C. G. (1987). DNA-DNA hybridization evidence of the rapid rate of muroid rodent DNA evolution.Mol. Biol. Evol. 4: 242–253.Google Scholar
  10. Champion, A. B., Prager, E. M., Wachter, D., and Wilson, A. C. (1974). Microcomplement fixation. In:Biochemical and Immunological Taxonomy of Animals, C. A. Wright, ed., pp. 397–416, Academic Press, London.Google Scholar
  11. Chevret, P., Denys, C., Jaeger, J.-J., Michaux, J., and Catzeflis, F. M. (1993). Molecular evidence that the spiny mouse (Acomys) is more closely related to gerbils (Gerbillinae) than to true mice (Murinae).Proc. Natl. Acad. Sci. USA 90 3433–3436.Google Scholar
  12. Eisentraut, M. (1989). Das Gaumenfaltermuster bei einigen madagassischen Viverriden und ein vergleich mit festländischen Vertretern.Bonn. Zool. Beitr. 40 79–84.Google Scholar
  13. Felsenstein, J. (1990).PHYLIP—Phylogeny Inference Package, Version 3.3, University of Washington, Seattle.Google Scholar
  14. Flower, W. H. (1869). On the value of the characters of the base of the cranium in the classification of the Order Carnivora, and on the systematic position ofBassaris and other disputed forms.Proc. Zool. Soc. London 1869 4–37.Google Scholar
  15. Flynn, J. M., and Galliano, H. (1982). Phylogeny of early Tertiary Carnivora, with a description of a new species ofProtictis from the middle Eocene of Northwestern Wyoming.Am. Mus. Novit. 2632 1–16.Google Scholar
  16. Flynn, J. M., Neff, N. A., and Tedford, R. H. (1988). Phylogeny of the Carnivora. In:The Phylogeny and Classification of the Tetrapods, Vol. 2, M. J. Benton, ed., pp. 73–115, Clarendon Press, Oxford.Google Scholar
  17. Ginsburg, L. (1961). La faune des carnivores miocènes de Sansan (Gers).Mém. Mus. Natl. Hist. Nat. Nouv. Sér., Sér. C 9 1–187.Google Scholar
  18. Gregory, W. K., and Hellman, M. (1939). On the evolution and major classification of the civets (Viverridae) and allied fossil and Recent Carnivora: A phylogenetic study of the skull and dentition.Proc. Am. Philos. Soc. 81 309–392.Google Scholar
  19. Hemmer, H. (1978). The evolutionary systematics of the living Felidae. Present status and current problems.Carnivore 1 71–79.Google Scholar
  20. Honacki, J. H., Kinman, K. E., and Koeppl, J. W. (1982).Mammal Species of the World, p. 694, Allen Press, New York.Google Scholar
  21. Hunt, J. A., Hall, T. J., and Britten, R. J. (1981). Evolutionary distances in HawaiianDrosophila measured by DNA reassociation.J. Mol. Evol. 17 361–367.Google Scholar
  22. Hunt, R. M. (1987). Evolution of the aeluroid Carnivora: Significance of auditory structure in the nimravid catDinictis.Am. Mus. Novit. 2886 1–74.Google Scholar
  23. Hunt, R. M. (1989). Evolution of the aeluroid Carnivora: Significance of the ventral promontorial process of the petrosal, and the origin of basicranial patterns in the living families.Am. Mus. Novit. 2930 1–32.Google Scholar
  24. Hunt, R. M. (1991). Evolution of the aeluroid Carnivora: Viverrid affinities of the Miocene carnivoranHerpestides.Am. Mus. Novit. 3023 1–34.Google Scholar
  25. Hunt, R. M., and Solounias, N. (1991). Evolution of the aeluroid Carnivora: Hyaenid affinities of the Miocene carnivoranTungurictys spocki from Inner Mongolia.Am. Mus. Novit. 3030 1–25.Google Scholar
  26. Jukes, T. H., and Cantor, C. R. (1969). Evolution of protein molecules. In:Mammalian Protein Metabolism, H. N. Munro, ed., pp. 21–123, Academic Press, Orlando, FL.Google Scholar
  27. Kirsch, J. A. W., Ganje, R. J., Olesen, K. G., Hoffman, D. W., and Bledsoe, A. H. (1990). TED, an improved thermal elution device for the simultaneous hydroxyapatite chromatography of solution DNA/DNA hybrids.Biotechniques 8 506–507.Google Scholar
  28. Köhncke, M., and Leonhardt, K. (1986).Cryptoprocta ferox.Mammal. Sp. (Am. Soc. Mammal.) 254 1–5.Google Scholar
  29. Krajewski, C., and Dickerman, A. W. (1990). Bootstrap analysis of phylogenetic trees derived from DNA hybridization distances.Syst. Zool. 39 383–390.Google Scholar
  30. Lavocat, R. (1952). Sur les affinités de quelques carnassiers de l'Oligocène d'Europe, notamment du genrePlesictis Pomel et du genreProailurus Filhol.Mammalia 16 62–72.Google Scholar
  31. Marks, J., Schmid, C. W., and Sarich, V. M. (1988). DNA hybridization as a guide to phylogeny: Relations of the Hominoidea.J. Hum. Evol. 17 769–786.Google Scholar
  32. Milne-Edwards, A., and Grandidier, A. (1867). Observations anatomiques sur quelques Mammiferes de Madagascar. Premier article: De l'organisation duCryptoprocta ferox.Ann. Sci. Nat. Ser. 5, Zool. 7 314–338, plates 7–10.Google Scholar
  33. Mivart, St. G. (1882). On the classification and distribution of Aeluroidea.Proc. Zool. Soc. Lond. 1882 135–208.Google Scholar
  34. Petter, G. (1974). Rapports phylétiques des Viverridae (Carnivores Fissipèdes). Les formes de Madagascar.Mammalia 38 605–636.Google Scholar
  35. Pocock, R. I. (1916). On the course of the internal carotid artery and the foramina connected therewith in the skulls of the Felidae and Viverridae.Ann. Mag. Nat. Hist. Ser. 8 17 261–269, plates 10–11.Google Scholar
  36. Sarich, V. M., and Cronin, J. E. (1976). Molecular systematics of the Primates. In:Molecular Anthropology, M. Goodman and R. Tashian, eds., pp. 141–170, Plenum Press, New York.Google Scholar
  37. Savage, D. E., and Russell, D. E. (1983).Mammalian Paleofaunas of the World, Addison-Wesley, London.Google Scholar
  38. Schmidt-Kittler, N. (1987). The Carnivora (Fissipedia) from the lower Miocene of East Africa.Paleontograph. Abt. 197(A): 85–126.Google Scholar
  39. Sheldon, F. H. (1987). Rates of single-copy DNA evolution in herons.Mol. Biol. Evol. 4 56–69.Google Scholar
  40. Sheldon, F. H., and Bledsoe, A. H. (1989). Indexes to the reassociation and stability of solution DNA hybrids.J. Mol. Evol. 29 328–343.Google Scholar
  41. Sheldon, F. H., Slikas, B., Kinnarney, M., Gill, F. B., Zhao, E., and Silverin, B. (1992). DNA-DNA hybridization evidence of phylogenetic relationships among major lineages ofParus.Auk 109 173–185.Google Scholar
  42. Sibley, C. G., and Ahlquist, J. E. (1990).Phylogeny and Classification of Birds: A Study in Molecular Evolution, Yale University Press, New Haven, CT.Google Scholar
  43. Simpson, G. G. (1945). The principles of classification and a classification of mammals.Bull. Am. Mus. Nat. Hist. 85 1–350.Google Scholar
  44. Springer, M. S., and Krajewski, C. (1989). DNA hybridization in animal taxonomy: A critique from first principles.Rev. Biol. 64 291–318.Google Scholar
  45. Springer, M. S., Kirsch, J. A. W., Aplin, K., and Flannery, T. (1990). DNA hybridization, cladistics, and the phylogeny of phalangerid marsupials.J. Mol. Evol. 30 298–311.Google Scholar
  46. Springer, M. S., Davidson, E. H., and Britten, R. J. (1992). Calculation of sequence divergence from thermal stability of DNA heteroduplexes,J. Mol. Evol. 34 379–382.Google Scholar
  47. Stains, H. J. (1984). Carnivores. In:Orders and Families of Recent Mammals of the World, S. Anderson and J. K. Jones, eds., pp. 491–522, Wiley and Sons, New York.Google Scholar
  48. Teilhard de Chardin, P. (1915). Les carnassiers des Phosphorites de Quercy.Ann. Paléontol. 9 103–191.Google Scholar
  49. Wayne, R. K., Benveniste, R. E., Janczewski, D. N., and O'Brien, S. J. (1989). Molecular and biochemical evolution of the Carnivora. In:Carnivore Behavior, Ecology and Evolution, J. L. Gittleman, ed., pp. 465–494, Cornell University Press, Ithaca, NY.Google Scholar
  50. Werman, S. D., Springer, M. S., and Britten, R. J. (1990). Nucleic acids: DNA-DNA hybridization. In:Molecular Systematics, D. M. Hillis and C. Moritz, eds., pp. 204–249, Sinauer Associates, Sunderland, MA.Google Scholar
  51. Wozencraft, W. C. (1984).A Phylogenetic Reappraisal of the Viverridae and Its Relationships to Other Carnivora, Ph.D. dissertation., University of Kansas, Lawrence.Google Scholar
  52. Wozencraft, W. C. (1989a). The phylogeny of the Recent Carnivora. In:Carnivore Behavior, Ecology and Evolution, J. L. Gittleman, ed., pp. 495–535, Cornell University Press, Ithaca, NY.Google Scholar
  53. Wozencraft, W. C. (1989b). Classification of the Recent Carnivora. In:Carnivore Behavior, Ecology and Evolution, J. L. Gittleman, ed., pp. 569–593, Cornell University Press, Ithaca, NY.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Géraldine Veron
    • 1
  • François M. Catzeflis
    • 2
  1. 1.Zoologie: Mammiferes et OiseauxMuseum National Histoire NaturelleParisFrance
  2. 2.Institut des Sciences de l' Evolution, URA 327 CNRSUniversité Montpellier IIMontpellierFrance

Personalised recommendations